譯者| 李睿
審校| 孫淑娟
保險業的自然語言處理(NLP)可以從混合機器學習/符號方法中受益,以提高可擴展性,同時利用高階符號推理。
#眾所周知,高達87%的資料科學專案未能從概念驗證到生產;保險領域的自然語言處理(NLP)項目也不例外。他們必須克服不可避免地與這個空間及其錯綜複雜相關的一些困難。
最主要的困難來自:
佈局的複雜性是如此之大,以至於相同的語言概念可以根據其在文件中的存放位置而極大地改變其含義和價值。
以下看一個簡單的例子:如果嘗試建立一個引擎來識別政策中是否存在「恐怖主義」覆蓋範圍,將不得不分配一個不同的值,無論它被放置在:
(1)申報頁面的分限額部分。
(2)政策的「排除」章節。
(3)增加一個或多個保險的背書。
(4)為此承保範圍新增特定內容的背書。
缺乏高品質、大小合適的帶註釋的保險文件語料庫,這與註釋此類複雜文件的固有難度以及註釋數萬份保單所需的工作量直接相關。
而這只是冰山一角。除此之外,還必須考慮保險概念正常化的必要性。
#在處理資料庫時,概念的標準化是一個很好理解的過程。因為它是應用推理和提高註釋過程速度的關鍵,它對於保險領域的NLP也是至關重要的。
規範化概念意味著在相同的標籤語言元素下分組,這可能看起來非常不同。雖然有許多例子,但最重要的例子來自針對自然災害的保險單。
在這種情況下,不同的子限制將應用於不同的洪水區。洪水風險最高的地區通常被稱為「高風險洪水區」。這個概念可以表示為:
(1)一級洪水區
(2)洪水風險區(SFHA)
(3)洪水區A
##等等
實際上,任何保險承保範圍都可以有許多術語,這些術語可以組合在一起,根據特定的地理區域及其固有風險,最重要的自然災害承保範圍甚至有兩層或三層的區別(I、II和III)。
將其乘以能找到的所有可能的元素,變體的數量很快就會變得非常大。這導致機器學習註釋器和自然語言處理(NLP)引擎在嘗試檢索、推斷甚至標記正確資訊時都陷入困境。
解決複雜自然語言處理(NLP)任務的更好方法是基於混合(機器學習/符號)技術,該技術透過基於機器學習的微語言聚類改善保險工作流程的結果和生命週期,然後由符號引擎繼承。
雖然在無監督學習方法中使用傳統的文本聚類來推斷語義模式,並將具有相似主題的文檔、具有相似含義的句子等組合在一起,但混合方法有很大的不同。使用預先定義的規範化值,透過在標記資料上訓練的機器學習演算法在粒度層級上建立微語言聚類。一旦推斷出微語言聚類,它就可以用於進一步的機器學習活動或用於基於符號層驅動推理邏輯的混合管道。
這符合傳統的程式設計黃金法則:「分解問題」。解決複雜用例(就像保險領域中的大多數用例一樣)的第一步是將其分解成更小、更容易接受的區塊。
符號引擎通常被標記為極其精確但不可擴展,因為在處理訓練階段未見的情況時,它們不具備機器學習的靈活性。
然而,這種類型的語言聚類透過利用機器學習來識別概念,從而解決這個問題,這些概念隨後被傳遞到管道中接下來的符號引擎的複雜和精確邏輯。
可能性是無窮無盡的:例如,符號步驟可以根據概念所屬的文件段改變機器學習辨識的內在價值。
以下是一個使用「分段」(將文字分割成相關區域)的符號過程來了解如何使用機器學習模組傳遞的標籤的範例。
想像一下,模型需要理解是否某些保險範圍被排除在100頁保單之外。
機器學習引擎將首先將“藝術”(Arts)覆蓋範圍的所有可能變體聚集在一起:
緊接著,管道的符號部分將檢查「排除」部分是否提到了「藝術」(Arts)標籤,從而了解該保險是否被排除在保單之外,或者是否被覆蓋(作為次級限額清單的一部分)。
由於這一點,機器學習註釋者不必擔心根據「藝術」(Arts)變體在策略中的位置為所有「美術」變體指定不同的標籤:他們只需要為其變體註釋「藝術」(Arts)的規範化值,這將作為一個微語言集群。
複雜任務的另一個有用範例是資料聚合。如果混合引擎旨在提取特定覆蓋範圍的子限制,以及覆蓋規範化問題,則需要處理額外的複雜層:用於聚合的語言項目的順序。
考慮一下,手邊的任務不僅是提取特定覆蓋範圍的子限制,還提取其限定符(每次事件、聚合等)。這三個項目可以以幾個不同的順序排列:
原文標題:#Insurance Policies: Document Clustering Through Hybrid NLP##,作者:Stefano Reitano
以上是應用自然語言處理進行保險文檔聚類的策略與方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!