首頁 >後端開發 >Python教學 >剖析Python垃圾回收機制

剖析Python垃圾回收機制

coldplay.xixi
coldplay.xixi轉載
2020-10-29 17:23:452301瀏覽

python教學專欄今天來剖析Python垃圾回收機制!

剖析Python垃圾回收機制

1、垃圾回收

引用計數器為主、分碼回收和標記清除為子

# 1.1 大管家refchain

在Python的C源碼中有一個名為refchain的環狀雙向鍊錶,這個鍊錶比較牛逼了,因為Python程式中一旦創建物件都會把這個物件加入refchain這個鍊錶中。也就是說他保存著所有的對象。

1.2 引用計數器

  • 在refchain中的所有物件內部都有一個ob_refcnt用來保存目前物件的參考計數器,顧名思義就是自己被引用的次數。
  • 當值被多次引用時候,不會在記憶體中重複建立數據,而是引用計數器 1 。當物件被銷毀時候同時會讓引用計數器-1,如果引用計數器為0,則將物件從refchain鍊錶中摘除,同時在記憶體中進行銷毀(暫不考慮快取等特殊情況)。
age = 18number = age  # 对象18的引用计数器 + 1del age          # 对象18的引用计数器 - 1def run(arg):
    print(arg)
run(number)   # 刚开始执行函数时,对象18引用计数器 + 1,当函数执行完毕之后,对象18引用计数器 - 1 。num_list = [11,22,number] # 对象18的引用计数器 + 1复制代码

1.3 標記清除&分代回收

基於引用計數器進行垃圾回收非常方便和簡單,但他還是存在循環引用的問題,導致無法正常的回收一些數據,例如:

v1 = [11,22,33]        # refchain中创建一个列表对象,由于v1=对象,所以列表引对象用计数器为1.v2 = [44,55,66]        # refchain中再创建一个列表对象,因v2=对象,所以列表对象引用计数器为1.v1.append(v2)        # 把v2追加到v1中,则v2对应的[44,55,66]对象的引用计数器加1,最终为2.v2.append(v1)        # 把v1追加到v1中,则v1对应的[11,22,33]对象的引用计数器加1,最终为2.del v1    # 引用计数器-1del v2    # 引用计数器-1复制代码
  • 對於上述程式碼會發現,執行del操作之後,沒有變數再會去使用那兩個列表對象,但由於循環引用的問題,他們的引用計數器不為0,所以他們的狀態:永遠不會被使用、也不會被銷毀。專案中如果這種程式碼太多,就會導致記憶體一直被消耗,直到記憶體被耗盡,程式崩潰。
  • 為了解決循環引用的問題,引入了標記清除技術,專門針對那些可能存在循環引用的物件進行特殊處理,可能存在循環應用的類型有:列表、元組、字典、集合、自定義類別等那些能進行資料嵌套的類型。

標記清除:建立特殊鍊錶專門用來保存清單、元組、字典、集合、自訂類別等對象,之後再去檢查這個鍊錶中的對像是否存在循環引用,如果存在則讓雙方的引用計數器均- 1 。

分代回收:對標記清除中的鍊錶進行最佳化,將那些可能存在循引用的物件拆分到3個鍊錶,鍊錶稱為:0/1/2三代,每代都可以儲存物件和閾值,當達到閾值時,就會對對應的鍊錶中的每個物件做一次掃描,除循環引用各自減1並且銷毀引用計數器為0的物件。

// 分代的C源码#define NUM_GENERATIONS 3struct gc_generation generations[NUM_GENERATIONS] = {    /* PyGC_Head,                                    threshold,    count */
    {{(uintptr_t)_GEN_HEAD(0), (uintptr_t)_GEN_HEAD(0)},   700,        0}, // 0代
    {{(uintptr_t)_GEN_HEAD(1), (uintptr_t)_GEN_HEAD(1)},   10,         0}, // 1代
    {{(uintptr_t)_GEN_HEAD(2), (uintptr_t)_GEN_HEAD(2)},   10,         0}, // 2代};复制代码

特別注意:0代和1、2代的threshold和count表示的意義不同。

0代,count表示0代鍊錶中物件的數量,threshold表示0代鍊錶物件個數閾值,超過則執行一次0代掃描檢查。 1代,count表示0代鍊錶掃描的次數,threshold表示0代鍊錶掃描的次數閾值,超過則執行一次1代掃描檢查。 2代,count表示1代鍊錶掃描的次數,threshold表示1代鍊錶掃描的次數閾值,超過則執行一2代掃描檢查。

1.4 情境模擬

根據C語言底層並結合圖表來講解記憶體管理和垃圾回收的詳細過程。

第一步:當建立物件age=19時,會將物件加入refchain鍊錶中。

第二步:當建立物件num_list = [11,22]時,會將清單物件新增至 refchain 和 generations 0世代。

第三個步驟:新建立物件使generations的0代鍊錶上的物件數量大於閾值700時,要對鍊錶上的物件進行掃描檢查。

當0代大於閾值後,底層不是直接掃描0代,而是先判斷2、1是否也超過了閾值。

  • 如果2、1代未達到閾值,則掃描0代,並讓1代的 count 1 。
  • 如果2代已達到閾值,則將2、1、0三個鍊錶拼接起來進行全掃描,並將2、1、0代的count重設為0.
  • #如果1代已達到閾值,則講1、0兩個鍊錶拼接起來進行掃描,並將所有1、0代的count重置為0.

對拼接起來的鍊錶在進行掃描時,主要就是剔除循環引用和銷毀垃圾,詳細過程為:

  • 扫描链表,把每个对象的引用计数器拷贝一份并保存到 gc_refs中,保护原引用计数器。
  • 再次扫描链表中的每个对象,并检查是否存在循环引用,如果存在则让各自的gc_refs减 1 。
  • 再次扫描链表,将 gc_refs 为 0 的对象移动到unreachable链表中;不为0的对象直接升级到下一代链表中。
  • 处理unreachable链表中的对象的 析构函数 和 弱引用,不能被销毁的对象升级到下一代链表,能销毁的保留在此链表。析构函数,指的就是那些定义了__del__方法的对象,需要执行之后再进行销毁处理。
  • 最后将 unreachable 中的每个对象销毁并在refchain链表中移除(不考虑缓存机制)。

至此,垃圾回收的过程结束。

1.5 缓存机制

从上文大家可以了解到当对象的引用计数器为0时,就会被销毁并释放内存。而实际上他不是这么的简单粗暴,因为反复的创建和销毁会使程序的执行效率变低。Python中引入了“缓存机制”机制。

例如:引用计数器为0时,不会真正销毁对象,而是将他放到一个名为 free_list 的链表中,之后会再创建对象时不会在重新开辟内存,而是在free_list中将之前的对象来并重置内部的值来使用。

  • float类型,维护的free_list链表最多可缓存100个float对象。
  v1 = 3.14    # 开辟内存来存储float对象,并将对象添加到refchain链表。
  print( id(v1) ) # 内存地址:4436033488
  del v1    # 引用计数器-1,如果为0则在rechain链表中移除,不销毁对象,而是将对象添加到float的free_list.
  v2 = 9.999    # 优先去free_list中获取对象,并重置为9.999,如果free_list为空才重新开辟内存。
  print( id(v2) ) # 内存地址:4436033488
  # 注意:引用计数器为0时,会先判断free_list中缓存个数是否满了,未满则将对象缓存,已满则直接将对象销毁。复制代码
  • int类型,不是基于free_list,而是维护一个small_ints链表保存常见数据(小数据池),小数据池范围:-5 <= value < 257。即:重复使用这个范围的整数时,不会重新开辟内存。
  v1 = 38    # 去小数据池small_ints中获取38整数对象,将对象添加到refchain并让引用计数器+1。
  print( id(v1))  #内存地址:4514343712
  v2 = 38 # 去小数据池small_ints中获取38整数对象,将refchain中的对象的引用计数器+1。
  print( id(v2) ) #内存地址:4514343712
  # 注意:在解释器启动时候-5~256就已经被加入到small_ints链表中且引用计数器初始化为1,
  # 代码中使用的值时直接去small_ints中拿来用并将引用计数器+1即可。另外,small_ints中的数据引用计数器永远不会为0
  # (初始化时就设置为1了),所以也不会被销毁。复制代码
  • str类型,维护unicode_latin1[256]链表,内部将所有的ascii字符缓存起来,以后使用时就不再反复创建。
  v1 = "A"
  print( id(v1) ) # 输出:4517720496
  del v1
  v2 = "A"
  print( id(v1) ) # 输出:4517720496
  # 除此之外,Python内部还对字符串做了驻留机制,针对只含有字母、数字、下划线的字符串(见源码Objects/codeobject.c),如果
  # 内存中已存在则不会重新在创建而是使用原来的地址里(不会像free_list那样一直在内存存活,只有内存中有才能被重复利用)。
  v1 = "asdfg"
  v2 = "asdfg"
  print(id(v1) == id(v2)) # 输出:True复制代码
  • list类型,维护的free_list数组最多可缓存80个list对象。

 v1 = [11,22,33]
print( id(v1) ) # 输出:4517628816del v1
v2 = ["你","好"]
print( id(v2) ) # 输出:4517628816复制代码
  • tuple类型,维护一个free_list数组且数组容量20,数组中元素可以是链表且每个链表最多可以容纳2000个元组对象。元组的free_list数组在存储数据时,是按照元组可以容纳的个数为索引找到free_list数组中对应的链表,并添加到链表中。
v1 = (1,2)
print( id(v1) )del v1  # 因元组的数量为2,所以会把这个对象缓存到free_list[2]的链表中。v2 = ("哈哈哈","Alex")  # 不会重新开辟内存,而是去free_list[2]对应的链表中拿到一个对象来使用。print( id(v2) )复制代码
  • dict类型,维护的free_list数组最多可缓存80个dict对象
  v1 = {"k1":123}
  print( id(v1) )  # 输出:4515998128
  del v1
  v2 = {"name":"哈哈哈","age":18,"gender":"男"}
  print( id(v1) ) # 输出:4515998128复制代码

C语言源码底层分析

相关免费学习推荐:python教程(视频)

以上是剖析Python垃圾回收機制的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:juejin.im。如有侵權,請聯絡admin@php.cn刪除