搜尋
首頁後端開發Python教學Python greenlet使用介紹及實作原理分析

最近開始研究Python的平行開發技術,包括多線程,多進程,協程等。逐步整理了網路上的一些資料,今天整理了一下greenlet相關的資料。

並發處理的技術背景

並行化處理目前很受重視, 因為在很多時候,並行運算能大大的提高系統吞吐量,尤其在現在多核心多處理器的時代,所以像lisp這種古老的語言又被人們重新拿了起來, 函數式程式設計也越來越流行。 介紹一個python的並行處理的一個庫: greenlet。 python 有一個很有名的函式庫叫做 stackless ,用來做並發處理, 主要是弄了個叫做tasklet的微線程的東西, 而greenlet 跟stackless的最大區別是, 他很輕量級?不夠, 最大的差別是greenlet需要你自己來處理線程切換, 就是說,你需要自己指定現在要執行哪個greenlet再執行哪個greenlet。

greenlet的實作機制

以前使用python開發web程式,一直使用的是fastcgi模式.然後每個進程中啟動多個執行緒來進行請求處理.這裡有一個問題就是需要保證每個請求回應時間都要特別短,不然只要多請求幾次慢的就會讓伺服器拒絕服務,因為沒有線程能夠響應請求了.平時我們的服務上線都會進行性能測試的,所以正常情況沒有太大問題.但是不可能所有場景都測試到.一旦出現就會讓用戶等好久沒有響應.部分不可用導致全部不可用.後來轉換到了coroutine,python 下的greenlet.所以對它的實現機製做了一個簡單的了解.

每個greenlet都只是heap中的一個python object(PyGreenlet).所以對於一個進程你創建百萬甚至千萬個greenlet都沒有問題.

typedef struct _greenlet {
	PyObject_HEAD
	char* stack_start;
	char* stack_stop;
	char* stack_copy;
	intptr_t stack_saved;
	struct _greenlet* stack_prev;
	struct _greenlet* parent;
	PyObject* run_info;
	struct _frame* top_frame;
	int recursion_depth;
	PyObject* weakreflist;
	PyObject* exc_type;
	PyObject* exc_value;
	PyObject* exc_traceback;
	PyObject* dict;
} PyGreenlet;

每一個greenlet其實就是一個函數,以及保存這個函數執行時的上下文.對於函數來說上下文也就是其stack..同一個進程的所有的greenlets共用一個共同的操作系統分配的用戶棧.所以同一時刻只能有堆疊資料不衝突的greenlet使用這個全域的棧.greenlet是透過stack_stop,stack_start來保存其stack的棧底和棧頂的,如果出現將要執行的greenlet的stack_stop和目前棧中的greenlet重疊的情況,就要把這些重疊的greenlet的棧中資料暫時保存到heap中.保存的位置通過stack_copy和stack_saved來記錄,以便恢復的時候從heap中拷貝回棧中stack_stop和stack_start的位置.不然就會出現其棧數據會被破壞的情況.所以應用程式創建的這些greenlet就是透過不斷的拷貝資料到heap中或從heap中拷貝到棧中來實現並發的.對於io型的應用程式使用coroutine真的非常舒服.

下面是greenlet的一個簡單的棧空間模型(from greenlet.c)

A PyGreenlet is a range of C stack addresses that must be
saved and restored in such a way that the full range of the
stack contains valid data when we switch to it.

Stack layout for a greenlet:

               |     ^^^       |
               |  older data   |
               |               |
  stack_stop . |_______________|
        .      |               |
        .      | greenlet data |
        .      |   in stack    |
        .    * |_______________| . .  _____________  stack_copy + stack_saved
        .      |               |     |             |
        .      |     data      |     |greenlet data|
        .      |   unrelated   |     |    saved    |
        .      |      to       |     |   in heap   |
 stack_start . |     this      | . . |_____________| stack_copy
               |   greenlet    |
               |               |
               |  newer data   |
               |     vvv       |

下面是一段簡單的greenlet程式碼.

from greenlet import greenlet

def test1():
    print 12
    gr2.switch()
    print 34

def test2():
    print 56
    gr1.switch()
    print 78

gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()

目前所討論的協程,一般是程式語言提供支援的。目前我所知提供協程支援的語言包括python,lua,go,erlang, scala和rust。協程不同於執行緒的地方在於協程不是作業系統進行切換,而是由程式設計師編碼進行切換的,也就是說切換是由程式設計師控制的,這樣就沒有了執行緒所謂的安全問題。

所有的協程都共用整個行程的上下文,這樣協程間的交換也非常方便。

相對於第二種方案(I/O多路復用),使得使用協程寫的程序將更加的直觀,而不是將一個完整的流程拆分成多個管理的事件處理。協程的缺點可能是無法利用多核心優勢,不過,這個可以用協程+流程的方式來解決。

協程可以用來處理並發來提高效能,也可以用來實現狀態機來簡化程式設計。我用的更多的是第二個。去年年底接觸python,了解到了python的協程概念,後來透過pycon china2011接觸到處理yield,greenlet也是一個協程方案,而且在我看來是更可用的一個方案,特別是用來處理狀態機。

目前這一塊已經基本完成,後面抽空總結一下。

總結一下:

1)多進程能夠利用多核心優勢,但是進程間通訊比較麻煩,另外,進程數目的增加會使效能下降,進程切換的成本較高。程式流程複雜度相對I/O多重化要低。

2)I/O多重化是在一個行程內部處理多個邏輯流程,不用進行行程切換,效能較高,另外流程間共享資訊簡單。但是無法利用多核心優勢,另外,程式流程被事件處理切割成一個小塊,程式比較複雜,難於理解。

3)執行緒運行在一個行程內部,由作業系統調度,切換成本較低,另外,他們共享行程的虛擬位址空間,執行緒間共享資訊簡單。但是線程安全性問題導致線程學習曲線陡峭,而且易出錯。

4)協程有程式語言提供,由程式設計師控制進行切換,所以沒有執行緒安全性問題,可以用來處理狀態機,並發請求等。但是無法利用多核心優勢。

上面的四種方案可以搭配使用,我比較看好的是行程+協程的模式

#

以上是Python greenlet使用介紹及實作原理分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python中的數學模塊:統計Python中的數學模塊:統計Mar 09, 2025 am 11:40 AM

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

python對象的序列化和避難所化:第1部分python對象的序列化和避難所化:第1部分Mar 08, 2025 am 09:39 AM

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

哪些流行的Python庫及其用途?哪些流行的Python庫及其用途?Mar 21, 2025 pm 06:46 PM

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

如何使用Python創建命令行接口(CLI)?如何使用Python創建命令行接口(CLI)?Mar 10, 2025 pm 06:48 PM

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

用美麗的湯在Python中刮擦網頁:搜索和DOM修改用美麗的湯在Python中刮擦網頁:搜索和DOM修改Mar 08, 2025 am 10:36 AM

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

如何解決Linux終端中查看Python版本時遇到的權限問題?如何解決Linux終端中查看Python版本時遇到的權限問題?Apr 01, 2025 pm 05:09 PM

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),