請我喝杯咖啡☕
*備忘錄:
- 我的帖子解釋了 OxfordIIITPet()。
Resize() 可以調整零個或多個影像的大小,如下所示:
*備忘錄:
- 初始化的第一個參數是 size(必要型別:int 或 tuple/list(int)):
*備註:
- 它是[寬度,高度]。
- 必須是 1
- 元組/列表必須是具有 1 或 2 個元素的一維。
- 單一值(int 或 tuple/list(int`))套用於較小影像的寬度或高度邊緣,然後另一個較大的寬度或高度邊緣也會調整大小: *備註:
- 如果影像寬度小於其高度,則為 [尺寸, 尺寸 * 寬度 / 高度]。
- 若影像寬度大於其高度,則為 [尺寸 * 寬度 / 高度 , 尺寸]。
- 如果影像寬度等於其高度,則為 [size, size]。
- 初始化的第二個參數是插值(Optional-Default:InterpolationMode.BILINEAR-Type:InterpolationMode)。
- 初始化的第三個參數是 max_size(Optional-Default:None-Type:int):
*備註:
- 僅當 size 為單一值(int 或 tuple/list(int`))時才支援。
- 應用尺寸後,如果較大影像的寬度或高度邊緣超過它,則會將其應用於較大影像的寬度或高度邊緣以限制影像尺寸,然後其他較小影像的寬度或高度邊緣也會變得比之前小。
- 初始化的第四個參數是抗鋸齒(可選預設值:True-Type:bool)。 *即使設定為 False,插值為 InterpolationMode.BILINEAR 或 InterpolationMode.BICUBIC 時也始終為 True。
- 第一個參數是img(必需類型:PIL映像或張量(int,float,complex或bool)):
*備註:
- 張量必須是一個或多個元素的 3D 或多維張量。
- 不要使用img=。
- v2建議依照V1還是V2使用?我應該使用哪一個?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import Resize from torchvision.transforms.functional import InterpolationMode resize = Resize(size=100) resize = Resize(size=100, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias=True) resize # Resize(size=[100], # interpolation=InterpolationMode.BILINEAR, # antialias=True) resize.size # [100] resize.interpolation # <interpolationmode.bilinear:> print(resize.max_size) # None resize.antialias # True origin_data = OxfordIIITPet( root="data", transform=None ) p1000_data = OxfordIIITPet( root="data", transform=Resize(size=1000) # transform=Resize(size=[1000]) ) p100_data = OxfordIIITPet( root="data", transform=Resize(size=100) ) p50_data = OxfordIIITPet( root="data", transform=Resize(size=50) ) p10_data = OxfordIIITPet( root="data", transform=Resize(size=10) ) p100p180_data = OxfordIIITPet( root="data", transform=Resize(size=[100, 180]) ) p180p100_data = OxfordIIITPet( root="data", transform=Resize(size=[180, 100]) ) p100ms110_data = OxfordIIITPet( root="data", transform=Resize(size=100, max_size=110) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") show_images1(data=p1000_data, main_title="p1000_data") show_images1(data=p100_data, main_title="p100_data") show_images1(data=p50_data, main_title="p50_data") show_images1(data=p10_data, main_title="p10_data") print() show_images1(data=origin_data, main_title="origin_data") show_images1(data=p100p180_data, main_title="p100p180_data") show_images1(data=p180p100_data, main_title="p180p100_data") print() show_images1(data=p100_data, main_title="p100_data") show_images1(data=p100ms110_data, main_title='p100ms110_data') # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None, ms=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) if not s: s = im.size resize = Resize(size=s, max_size=ms) # Here plt.imshow(X=resize(im)) # Here plt.tight_layout() plt.show() show_images2(data=origin_data, main_title="origin_data") show_images2(data=origin_data, main_title="p1000_data", s=1000) show_images2(data=origin_data, main_title="p100_data", s=100) show_images2(data=origin_data, main_title="p50_data", s=50) show_images2(data=origin_data, main_title="p10_data", s=10) print() show_images2(data=origin_data, main_title="origin_data") show_images2(data=origin_data, main_title="p100p180_data", s=[100, 180]) show_images2(data=origin_data, main_title="p180p100_data", s=[180, 100]) print() show_images2(data=origin_data, main_title="p100_data", s=100) show_images2(data=origin_data, main_title="p100ms110_data", s=100, ms=110) </interpolationmode.bilinear:>
以上是在 PyTorch 中調整大小的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

記事本++7.3.1
好用且免費的程式碼編輯器

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境