在當今的容器化世界中,高效的後端應用程式部署至關重要。 FastAPI 是一種流行的 Python 框架,擅長創建快速、高效能的 API。 我們將使用套件管理器 uv
來簡化依賴管理。
紫外線
假設您已經安裝了 uv
和 Docker,讓我們建立我們的應用程式:uv init simple-app
。這會產生:
<code>simple-app/ ├── .python-version ├── README.md ├── hello.py └── pyproject.toml</code>
pyproject.toml
儲存項目元資料:
[project] name = "simple-app" version = "0.1.0" description = "Add your description here" readme = "README.md" requires-python = ">=3.11" dependencies = []
將專案依賴項加入pyproject.toml
:
dependencies = [ "fastapi[standard]=0.114.2", "python-multipart=0.0.7", "email-validator=2.1.0", "pydantic>2.0", "SQLAlchemy>2.0", "alembic=1.12.1", ] [tool.uv] dev-dependencies = [ "pytest=7.4.3", "mypy=1.8.0", "ruff=0.2.2", "pre-commit=4.0.0", ]
[tool.uv]
部分定義了部署期間排除的開發依賴項。 運行 uv sync
到:
- 建立
uv.lock
。 - 建立虛擬環境 (
.venv
)。uv
如果需要,下載 Python 解釋器。 - 安裝相依性。
FastAPI
建立 FastAPI 應用程式結構:
<code>recipe-app/ ├── app/ │ ├── main.py │ ├── __init__.py │ └── ... ├── .python-version ├── README.md └── pyproject.toml</code>
在app/main.py
中:
from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Hello(BaseModel): message: str @app.get("/", response_model=Hello) async def hello() -> Hello: return Hello(message="Hi, I am using FastAPI")
運行:uv run fastapi dev app/main.py
。 您將看到類似以下的輸出:
訪問https://www.php.cn/link/c099034308f2a231c24281de338726c1。
Docker
讓我們 Docker 化。我們將在容器內開發。 加入Dockerfile
:
FROM python:3.11-slim ENV PYTHONUNBUFFERED=1 COPY --from=ghcr.io/astral-sh/uv:0.5.11 /uv /uvx /bin/ ENV UV_COMPILE_BYTE=1 ENV UV_LINK_MODE=copy WORKDIR /app ENV PATH="/app/.venv/bin:$PATH" COPY ./pyproject.toml ./uv.lock ./.python-version /app/ RUN --mount=type=cache,target=/root/.cache/uv \ --mount=type=bind,source=uv.lock,target=uv.lock \ --mount=type=bind,source=pyproject.toml,target=pyproject.toml \ uv sync --frozen --no-install-project --no-dev COPY ./app /app/app RUN --mount=type=cache,target=/root/.cache/uv \ uv sync --frozen --no-dev CMD ["fastapi", "dev", "app/main.py", "--host", "0.0.0.0"]
為了更輕鬆地管理容器,請使用 docker-compose.yaml
:
services: app: build: context: . dockerfile: Dockerfile working_dir: /app volumes: - ./app:/app/app ports: - "${APP_PORT:-8000}:8000" environment: - DATABASE_URL=${DATABASE_URL} depends_on: - postgres postgres: image: postgres:15 environment: POSTGRES_DB: ${POSTGRES_DB} POSTGRES_USER: ${POSTGRES_USER} POSTGRES_PASSWORD: ${POSTGRES_PASSWORD} volumes: - postgres_data:/var/lib/postgresql/data volumes: postgres_data: {}
建立一個包含環境變數的.env
檔案。 運行:docker compose up --build
.
[tool.uv]
和開發工具
[tool.uv]
中的pyproject.toml
部分列出了開發工具:
- pytest:測試框架(超出此處範圍)。
-
mypy: 靜態型別檢查器。手動運行:
uv run mypy app
. - ruff: 快速 linter(替換多個工具)。
-
預先提交: 管理預提交掛鉤。建立
.pre-commit-config.yaml
:
repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v4.4.0 hooks: - id: check-added-large-files - id: check-toml - id: check-yaml args: - --unsafe - id: end-of-file-fixer - id: trailing-whitespace - repo: https://github.com/astral-sh/ruff-pre-commit rev: v0.8.6 hooks: - id: ruff args: [--fix] - id: ruff-format
為pyproject.toml
和mypy
新增ruff
設定(原文提供範例)。 安裝 VS Code Ruff 擴充功能以進行即時 linting。 此設定可確保一致的程式碼風格、類型檢查和預提交檢查,以實現簡化的工作流程。
以上是可擴展的 Python 後端:使用 uv、Docker 和預先提交構建容器化 FastAPI 應用程式:逐步指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

禪工作室 13.0.1
強大的PHP整合開發環境

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

Dreamweaver CS6
視覺化網頁開發工具

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具