搜尋
首頁後端開發Python教學pandas 中語法 `df[&#column&#] = expression` 的解釋

Explanation of the syntax `df[

Pandas df['column'] = expression 語法詳解:用於在 Pandas DataFrame (df) 中建立修改賦值列。讓我們逐步分解,從基礎到進階。


基礎篇

1. 建立新欄位

  • 當 DataFrame 中不存在某一列時,向 df['column'] 賦值會建立一個新欄位。

  • 範例:

      import pandas as pd
      df = pd.DataFrame({'A': [1, 2, 3]})
      print(df)
      # 输出:
      #    A
      # 0  1
      # 1  2
      # 2  3
    
      # 创建一个新列 'B',所有值都设置为 0
      df['B'] = 0
      print(df)
      # 输出:
      #    A  B
      # 0  1  0
      # 1  2  0
      # 2  3  0

2. 修改現有欄位

  • 如果列已存在,賦值會取代其內容。

  • 範例:

      df['B'] = [4, 5, 6]  # 替换列 'B' 中的值
      print(df)
      # 输出:
      #    A  B
      # 0  1  4
      # 1  2  5
      # 2  3  6

中級篇

3. 基於表達式的賦值

  • 可以基於計算或轉換向列賦值。

  • 範例:

      df['C'] = df['A'] + df['B']  # 创建列 'C' 为 'A' 和 'B' 的和
      print(df)
      # 输出:
      #    A  B   C
      # 0  1  4   5
      # 1  2  5   7
      # 2  3  6   9

4. 使用條件賦值

  • 可以使用 Pandas 的布林索引進行條件賦值。

  • 範例:

      df['D'] = df['A'].apply(lambda x: 'Even' if x % 2 == 0 else 'Odd')
      print(df)
      # 输出:
      #    A  B   C     D
      # 0  1  4   5   Odd
      # 1  2  5   7  Even
      # 2  3  6   9   Odd

5. 在表達式中使用多列

  • 可以在一個表達式中使用多列進行更複雜的計算。

  • 範例:

      df['E'] = (df['A'] + df['B']) * df['C']
      print(df)
      # 输出:
      #    A  B   C     D    E
      # 0  1  4   5   Odd   25
      # 1  2  5   7  Even   49
      # 2  3  6   9   Odd   81

高級篇

6. 向量化操作

  • 向列賦值可以使用向量化操作來提高效能。

  • 範例:

      df['F'] = df['A'] ** 2 + df['B'] ** 2  # 快速向量化计算
      print(df)
      # 输出:
      #    A  B   C     D    E   F
      # 0  1  4   5   Odd   25  17
      # 1  2  5   7  Even   49  29
      # 2  3  6   9   Odd   81  45

7. 使用 np.where 進行條件邏輯賦值

  • 可以使用 NumPy 來進行條件賦值。

  • 範例:

      import numpy as np
      df['G'] = np.where(df['A'] > 2, 'High', 'Low')
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G
      # 0  1  4   5   Odd   25  17   Low
      # 1  2  5   7  Even   49  29   Low
      # 2  3  6   9   Odd   81  45  High

8. 使用外部函數賦值

  • 基於應用於行或列的自訂函數向列賦值。

  • 範例:

      def custom_function(row):
          return row['A'] * row['B']
    
      df['H'] = df.apply(custom_function, axis=1)
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H
      # 0  1  4   5   Odd   25  17   Low   4
      # 1  2  5   7  Even   49  29   Low  10
      # 2  3  6   9   Odd   81  45  High  18

9. 鍊式操作

  • 可以將多個操作連結起來,讓程式碼更簡潔。

  • 範例:

      df['I'] = df['A'].add(df['B']).mul(df['C'])
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H    I
      # 0  1  4   5   Odd   25  17   Low   4   25
      # 1  2  5   7  Even   49  29   Low  10   49
      # 2  3  6   9   Odd   81  45  High  18   81

10. 一次賦值多列

  • 使用 assign() 一次呼叫建立或修改多列。

  • 範例:

      df = df.assign(
          J=df['A'] + df['B'],
          K=lambda x: x['J'] * 2
      )
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H    I   J   K
      # 0  1  4   5   Odd   25  17   Low   4   25   5  10
      # 1  2  5   7  Even   49  29   Low  10   49   7  14
      # 2  3  6   9   Odd   81  45  High  18   81   9  18

專家篇

11. 動態列賦值

  • 基於外部輸入動態建立列名。

  • 範例:

      columns_to_add = ['L', 'M']
      for col in columns_to_add:
          df[col] = df['A'] + df['B']
      print(df)

12. 使用外部資料賦值

  • 基於外部 DataFrame 或字典向列賦值。

  • 範例:

      mapping = {1: 'Low', 2: 'Medium', 3: 'High'}
      df['N'] = df['A'].map(mapping)
      print(df)
      # 输出:
      #    A  B   C     D    E   F     G   H    I   J   K      N
      # 0  1  4   5   Odd   25  17   Low   4   25   5  10    Low
      # 1  2  5   7  Even   49  29   Low  10   49   7  14  Medium
      # 2  3  6   9   Odd   81  45  High  18   81   9  18   High

13. 效能最佳化:

  • 賦值時,使用 Pandas 的內建函數(apply,向量化操作)比 Python 循環具有更好的效能。

總結

df['column'] = expression 文法是 Pandas 的核心功能,用途廣泛。它允許:

  • 新增、修改和操作 DataFrame 中的欄位。
  • 執行複雜的計算,包括基於條件的邏輯和多列轉換。
  • 鍊式操作和動態產生新列。

這使得 Pandas 成為強大的資料操作和分析庫。

以上是pandas 中語法 `df[&#column&#] = expression` 的解釋的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python中的數學模塊:統計Python中的數學模塊:統計Mar 09, 2025 am 11:40 AM

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

python對象的序列化和避難所化:第1部分python對象的序列化和避難所化:第1部分Mar 08, 2025 am 09:39 AM

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

哪些流行的Python庫及其用途?哪些流行的Python庫及其用途?Mar 21, 2025 pm 06:46 PM

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

用美麗的湯在Python中刮擦網頁:搜索和DOM修改用美麗的湯在Python中刮擦網頁:搜索和DOM修改Mar 08, 2025 am 10:36 AM

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

如何使用Python創建命令行接口(CLI)?如何使用Python創建命令行接口(CLI)?Mar 10, 2025 pm 06:48 PM

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

解釋Python中虛擬環境的目的。解釋Python中虛擬環境的目的。Mar 19, 2025 pm 02:27 PM

文章討論了虛擬環境在Python中的作用,重點是管理項目依賴性並避免衝突。它詳細介紹了他們在改善項目管理和減少依賴問題方面的創建,激活和利益。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境