首頁 >後端開發 >Python教學 >PyTorch 中的加州理工學院

PyTorch 中的加州理工學院

Mary-Kate Olsen
Mary-Kate Olsen原創
2024-12-12 10:27:091070瀏覽

請我喝杯咖啡☕

*我的貼文解釋了加州理工學院 101。

Caltech101()可以使用Caltech 101資料集,如下所示:

*備忘錄:

  • 第一個參數是 root(必要類型:str 或 pathlib.Path)。 *絕對或相對路徑都是可能的。
  • 第二個參數是 target_type(可選-預設:「category」-類型:str 或元組或 str 列表): *備註:
    • 可以為其設定“類別”和/或“註釋”。
    • 傳回 101 個類別(類別)標籤和/或帶有註解的 8.677 張圖像。
  • 第三個參數是transform(Optional-Default:None-Type:callable)。
  • 第四個參數是 target_transform(Optional-Default:None-Type:callable)。
  • 第五個參數是 download(Optional-Default:False-Type:bool): *備註:
    • 如果為 True,則從網路下載資料集並解壓縮(解壓縮)到根目錄。
    • 如果為 True 並且資料集已下載,則將其提取。
    • 如果為 True 並且資料集已下載並提取,則不會發生任何事情。
    • 如果資料集已經下載並提取,則應該為 False,因為它速度更快。
    • 下載資料集需要 gdown。
    • 您可以從此處手動下載並提取資料集(101_ObjectCategories.tar.gz 和 Annotations.tar)到 data/caltech101/。
  • 關於影像索引的類別(標籤),Faces(0) 為0~434,Faces_easy(1) 為435~869,(1) 為435~869,( 2)為870~1069, 摩托車(3)是1070~1867,手風琴(4)是1868~1922,飛機(5)是1923~2722,飛機(5)是1923~2722,(6)是2723~2764,螞蟻(7)為2765~2806,
(8)為2807~2853,
from torchvision.datasets import Caltech101

category_data = Caltech101(
    root="data"
)

category_data = Caltech101(
    root="data",
    target_type="category",
    transform=None,
    target_transform=None,
    download=False
)

annotation_data = Caltech101(
    root="data",
    target_type="annotation"
)

all_data = Caltech101(
    root="data",
    target_type=["category", "annotation"]
)

len(category_data), len(annotation_data), len(all_data)
# (8677, 8677, 8677)

category_data
# Dataset Caltech101
#     Number of datapoints: 8677
#     Root location: data\caltech101
#     Target type: ['category']

category_data.root
# 'data/caltech101'

category_data.target_type
# ['category']

print(category_data.transform)
# None

print(category_data.target_transform)
# None

category_data.download
# <bound method Caltech101.download of Dataset Caltech101
#     Number of datapoints: 8677
#     Root location: data\caltech101
#     Target type: ['category']>

len(category_data.categories)
# 101

category_data.categories
# ['Faces', 'Faces_easy', 'Leopards', 'Motorbikes', 'accordion', 
#  'airplanes', 'anchor', 'ant', 'barrel', 'bass', 'beaver',
#  'binocular', 'bonsai', 'brain', 'brontosaurus', 'buddha',
#  'butterfly', 'camera', 'cannon', 'car_side', 'ceiling_fan',
#  'cellphone', 'chair', 'chandelier', 'cougar_body', 'cougar_face', ...]

len(category_data.annotation_categories)
# 101

category_data.annotation_categories
# ['Faces_2', 'Faces_3', 'Leopards', 'Motorbikes_16', 'accordion',
#  'Airplanes_Side_2', 'anchor', 'ant', 'barrel', 'bass',
#  'beaver', 'binocular', 'bonsai', 'brain', 'brontosaurus',
#  'buddha', 'butterfly', 'camera', 'cannon', 'car_side',
#  'ceiling_fan', 'cellphone', 'chair', 'chandelier', 'cougar_body', ...]

category_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=510x337>, 0)

category_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=519x343>, 0)

category_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=492x325>, 0)

category_data[435]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=290x334>, 1)

category_data[870]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=192x128>, 2)

annotation_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=510x337>,
#  array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...],
#         [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]]))

annotation_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=519x343>,
#  array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...],
#         [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]]))

annotation_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=492x325>,
#  array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...],
#         [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]]))

annotation_data[435]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=290x334>,
#  array([[64.52631579, 95.31578947, 123.26315789, 149.31578947, ...],
#         [15.42105263, 8.31578947, 10.21052632, 28.21052632, ...]]))

annotation_data[870]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=192x128>,
#  array([[2.96536524, 7.55604534, 19.45780856, 33.73992443, ...],
#         [23.63413098, 32.13539043, 33.83564232, 8.84193955, ...]]))

all_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=510x337>,
#  (0, array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...],
#             [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]]))

all_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=519x343>,
#  (0, array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...],
#             [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]]))

all_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=492x325>,
#  (0, array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...],
#             [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]]))

all_data[3]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=538x355>,
#  (0, array([[19.54035088, 18.57894737, 26.27017544, 38.2877193, ...],
#             [131.49122807, 100.24561404, 74.2877193, 49.29122807, ...]]))

all_data[4]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=528x349>,
#  (0, array([[11.87982456, 11.87982456, 13.86578947, 15.35526316, ...],
#             [128.34649123, 105.50789474, 91.60614035, 76.71140351, ...]]))

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    ims = (0, 1, 2, 435, 870, 1070, 1868, 1923, 2723, 2765, 2807, 2854)
    for i, j in enumerate(ims, start=1):
        plt.subplot(2, 5, i)
        if len(data.target_type) == 1:
            if data.target_type[0] == "category":
                im, lab = data[j]
                plt.title(label=lab)
            elif data.target_type[0] == "annotation":
                im, (px, py) = data[j]
                plt.scatter(x=px, y=py)
            plt.imshow(X=im)
        elif len(data.target_type) == 2:
            if data.target_type[0] == "category":
                im, (lab, (px, py)) = data[j]
            elif data.target_type[0] == "annotation":
                im, ((px, py), lab) = data[j]
            plt.title(label=lab)
            plt.imshow(X=im)
            plt.scatter(x=px, y=py)
        if i == 10:
            break
    plt.tight_layout()
    plt.show()

show_images(data=category_data, main_title="category_data")
show_images(data=annotation_data, main_title="annotation_data")
show_images(data=all_data, main_title="all_data")
低音

(9)為2807~2853,Caltech in PyTorch低音

(9)為28542907 。

Caltech in PyTorch

Caltech in PyTorch

以上是PyTorch 中的加州理工學院的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn