零售店每天處理大量庫存,使得庫存監控和管理變得更加繁瑣。傳統的零售商店庫存管理方法繁瑣,監控、追蹤和管理效率低。這需要一個強大的數位化庫存管理系統,該系統可以無縫執行零售商店庫存分析,以減少手頭庫存,並以更少的體力勞動實現更多庫存銷售。
本文展示如何使用時間序列機器學習模型 SARIMA 來有效地執行零售商店庫存分析,併計算隨著時間的推移滿足客戶需求所需的庫存參數,從而使零售商店獲得最大利潤。
數據集
首先,下載資料集。此資料集包含特定產品的歷史記錄,包括日期、產品需求和當前庫存水準等資訊。
程式碼
執行需求預測和庫存管理的Python程式碼如下。
import pandas as pd import numpy as np import plotly.express as px from statsmodels.graphics.tsaplots import plot_acf, plot_pacf import matplotlib.pyplot as plt from statsmodels.tsa.statespace.sarimax import SARIMAX data = pd.read_csv("demand_inventory.csv") print(data.head()) data = data.drop(columns=['Unnamed: 0']) fig_demand = px.line(data, x='Date', y='Demand', title='Demand Over Time') fig_demand.show() fig_inventory = px.line(data, x='Date', y='Inventory', title='Inventory Over Time') fig_inventory.show() data['Date'] = pd.to_datetime(data['Date'], format='%Y/%m/%d') time_series = data.set_index('Date')['Demand'] differenced_series = time_series.diff().dropna() # Plot ACF and PACF of differenced time series fig, axes = plt.subplots(1, 2, figsize=(12, 4)) plot_acf(differenced_series, ax=axes[0]) plot_pacf(differenced_series, ax=axes[1]) plt.show() order = (1, 1, 1) seasonal_order = (1, 1, 1, 2) model = SARIMAX(time_series, order=order, seasonal_order=seasonal_order) model_fit = model.fit(disp=False) future_steps = 10 predictions = model_fit.predict(len(time_series), len(time_series) + future_steps - 1) predictions = predictions.astype(int) print(predictions) # Create date indices for the future predictions future_dates = pd.date_range(start=time_series.index[-1] + pd.DateOffset(days=1), periods=future_steps, freq='D') # Create a pandas Series with the predicted values and date indices forecasted_demand = pd.Series(predictions, index=future_dates) # Initial inventory level initial_inventory = 5500 # Lead time (number of days it takes to replenish inventory) lead_time = 1 # Service level (probability of not stocking out) service_level = 0.95 # Calculate the optimal order quantity using the Newsvendor formula z = np.abs(np.percentile(forecasted_demand, 100 * (1 - service_level))) order_quantity = np.ceil(forecasted_demand.mean() + z).astype(int) # Calculate the reorder point reorder_point = forecasted_demand.mean() * lead_time + z # Calculate the optimal safety stock safety_stock = reorder_point - forecasted_demand.mean() * lead_time # Calculate the total cost (holding cost + stockout cost) holding_cost = 0.1 # it's different for every business, 0.1 is an example stockout_cost = 10 # # it's different for every business, 10 is an example total_holding_cost = holding_cost * (initial_inventory + 0.5 * order_quantity) total_stockout_cost = stockout_cost * np.maximum(0, forecasted_demand.mean() * lead_time - initial_inventory) # Calculate the total cost total_cost = total_holding_cost + total_stockout_cost print("Optimal Order Quantity:", order_quantity) print("Reorder Point:", reorder_point) print("Safety Stock:", safety_stock) print("Total Cost:", total_cost)
理解程式碼
我們首先可視化“一段時間內的需求”和“一段時間內的庫存”,從中可以觀察到季節性模式。因此我們使用 SARIMA——季節性自回歸移動平均線來預測需求。
要使用SARIMA,我們需要p(自回歸階數)、d(差分度)、q(移動平均階數)、P(季節性AR 階數)、D(季節性差分)和Q(季節性MA 階數) 。繪製 ACF — 自相關函數和 PACF — 偏自相關函數來找出參數值。
現在為了預測,我們初始化一些值。我們將未來步驟(即預測天數)設為 10,提前期(即補充庫存的天數)設定為 1 以及其他此類零售商店相關值。
最後為了計算庫存最優結果,我們使用NewsVendor公式。 NewsVendor 公式源自 NewsVendor 模型,NewsVendor 模型是用於確定最佳庫存水準的數學模型。您可以從本文中了解有關 NewsVendor 公式的更多資訊。
最終評估結果是,
- 最佳訂購數量 — 指當庫存水準達到某一點時應向供應商訂購產品的數量。
- 再訂購點 — 在庫存耗盡之前應下新訂單以補充庫存的庫存水準。
- 安全庫存-手邊保留額外庫存,以因應需求和供應的不確定性。它可以作為需求或交貨時間意外變化的緩衝。
- 總成本 — 表示與庫存管理相關的綜合成本。
提出的 SARIMA 模型使用 Newsvendor 公式以有效的方式將零售商店庫存管理數位化,以計算滿足客戶需求所需的最佳庫存,同時使零售商獲得最大利潤。
希望這篇文章可以幫助您找到您想要的東西。歡迎對本文提出任何改進或建議。乾杯:)
在這裡查看我的社交並隨時聯繫^_^
以上是零售店的需求預測與庫存管理 - SARIMA 模型的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本教程演示如何使用Python處理Zipf定律這一統計概念,並展示Python在處理該定律時讀取和排序大型文本文件的效率。 您可能想知道Zipf分佈這個術語是什麼意思。要理解這個術語,我們首先需要定義Zipf定律。別擔心,我會盡量簡化說明。 Zipf定律 Zipf定律簡單來說就是:在一個大型自然語言語料庫中,最頻繁出現的詞的出現頻率大約是第二頻繁詞的兩倍,是第三頻繁詞的三倍,是第四頻繁詞的四倍,以此類推。 讓我們來看一個例子。如果您查看美國英語的Brown語料庫,您會注意到最頻繁出現的詞是“th

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

處理嘈雜的圖像是一個常見的問題,尤其是手機或低分辨率攝像頭照片。 本教程使用OpenCV探索Python中的圖像過濾技術來解決此問題。 圖像過濾:功能強大的工具圖像過濾器

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

Python是數據科學和處理的最愛,為高性能計算提供了豐富的生態系統。但是,Python中的並行編程提出了獨特的挑戰。本教程探討了這些挑戰,重點是全球解釋

本教程演示了在Python 3中創建自定義管道數據結構,利用類和操作員超載以增強功能。 管道的靈活性在於它能夠將一系列函數應用於數據集的能力,GE

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)