當我第一次開始建立 Colorify Rocks(我的調色板網站)時,我不知道程式化顏色操作的兔子洞有多深。最初是一個簡單的「讓我建立一個顏色選擇器」項目,後來變成了一次透過顏色理論、數學顏色空間和可訪問性考慮的迷人旅程。今天,我想分享我在建立此工具時學到的知識,以及一些可能對您自己的色彩冒險有所幫助的 Python 程式碼。
只是顏色而已,能有多難?
哦,過了我。那時的你多麼天真啊!我的旅程始於一個簡單的目標:建立一個網站,人們可以在其中產生和保存調色板。容易,對吧?只需取得一個十六進位代碼,然後...等等,什麼是 HSL?為什麼我們需要 RGB?那麼 CMYK 到底是什麼呢?
想看看我在說什麼嗎?看看我們對 #3B49DF 的顏色分析
這是我寫的第一段用來處理顏色轉換的程式碼,現在它的簡單性讓我咯咯笑:
class Color: def __init__(self, hex_code): self.hex = hex_code.lstrip('#') # Past me: "This is probably all I need!" def to_rgb(self): # My first "aha!" moment with color spaces r = int(self.hex[0:2], 16) g = int(self.hex[2:4], 16) b = int(self.hex[4:6], 16) return f"rgb({r},{g},{b})"
一切都是數學
然後我意識到顏色基本上只是偽裝的數學。在色彩空間之間進行轉換意味著深入研究我從高中以來就沒有接觸過的演算法。以下是程式碼演變成的內容
def _rgb_to_hsl(self): # This was my "mind-blown" moment r, g, b = [x/255 for x in (self.rgb['r'], self.rgb['g'], self.rgb['b'])] cmax, cmin = max(r, g, b), min(r, g, b) delta = cmax - cmin # The math that made me question everything I knew about colors h = 0 if delta != 0: if cmax == r: h = 60 * (((g - b) / delta) % 6) elif cmax == g: h = 60 * ((b - r) / delta + 2) else: h = 60 * ((r - g) / delta + 4) l = (cmax + cmin) / 2 s = 0 if delta == 0 else delta / (1 - abs(2 * l - 1)) return { 'h': round(h), 's': round(s * 100), 'l': round(l * 100) }
顏色之間有關係
我為 Colorify Rocks 建造的最令人興奮的功能之一是色彩和諧產生器。事實證明,顏色之間是有關係的,就像音符一樣!以下是我實現色彩和諧的方法:
def get_color_harmonies(self, color): """ This is probably my favorite piece of code in the entire project. It's like playing with a color wheel, but in code! """ h, s, l = color.hsl['h'], color.hsl['s'], color.hsl['l'] return { 'complementary': self._get_complementary(h, s, l), 'analogous': self._get_analogous(h, s, l), 'triadic': self._get_triadic(h, s, l), 'split_complementary': self._get_split_complementary(h, s, l) } def _get_analogous(self, h, s, l): # The magic numbers that make designers happy return [ self._hsl_to_hex((h - 30) % 360, s, l), self._hsl_to_hex(h, s, l), self._hsl_to_hex((h + 30) % 360, s, l) ]
無障礙
最令人大開眼界的是色盲用戶提交的回饋。我完全忽略了可訪問性!這促使我實現色盲模擬:
def simulate_color_blindness(self, color, type='protanopia'): """ This feature wasn't in my original plan, but it became one of the most important parts of Colorify Rocks """ matrices = { 'protanopia': [ [0.567, 0.433, 0], [0.558, 0.442, 0], [0, 0.242, 0.758] ], # Added more types after learning about different forms of color blindness 'deuteranopia': [ [0.625, 0.375, 0], [0.7, 0.3, 0], [0, 0.3, 0.7] ] } # Matrix multiplication that makes sure everyone can use our color palettes return self._apply_color_matrix(color, matrices[type])
隨著 Colorify Rocks 的發展,設計師開始要求更多功能。大的?顏色的色調和色調。這導致了一些有趣的實驗:
def get_color_variations(self, color, steps=10): """ This started as a simple feature request and turned into one of our most-used tools """ return { 'shades': self._generate_shades(color, steps), 'tints': self._generate_tints(color, steps), 'tones': self._generate_tones(color, steps) }
以上是顏色理論:以程式方式玩顏色的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

Dreamweaver Mac版
視覺化網頁開發工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3 Linux新版
SublimeText3 Linux最新版

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能