讀取巨大的CSV 檔案:最佳化記憶體和速度
當嘗試處理具有數百萬行和數百列的大量CSV文件時,傳統方法使用迭代器的方法可能會導致與記憶體相關的問題。本文探討了 Python 2.7 中處理大規模 CSV 資料的最佳化技術。
記憶體最佳化:
記憶體問題的癥結在於建立記憶體清單來儲存大型資料集。為了緩解這個問題,Python 提供了yield 關鍵字,它將函數轉換為生成器函數。這些函數在每個yield語句後暫停執行,允許在遇到資料時增量處理資料。
透過使用生成器函數,您可以逐行處理數據,無需將整個檔案儲存在記憶體中。以下程式碼示範了這種方法:
import csv def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row count = 0 for row in datareader: if row[3] == criterion: yield row count += 1 elif count: # stop processing when a consecutive series of non-matching rows is encountered return
速度增強:
此外,您可以利用 Python 的 dropwhile 和 takewhile 函數進一步提高處理速度。這些功能可以有效地過濾數據,使您能夠快速找到感興趣的行。具體方法如下:
from itertools import dropwhile, takewhile def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row yield from takewhile( # yield matching rows lambda r: r[3] == criterion, dropwhile( # skip non-matching rows lambda r: r[3] != criterion, datareader)) return
簡化循環處理:
透過組合產生器函數,您可以大幅簡化循環資料集的過程。以下是 getstuff 和 getdata 的最佳化程式碼:
def getdata(filename, criteria): for criterion in criteria: for row in getstuff(filename, criterion): yield row
現在,您可以直接迭代 getdata 產生器,它會逐行產生行流,釋放寶貴的記憶體資源。
請記住,目標是最大限度地減少記憶體資料存儲,同時最大限度地提高處理效率。透過應用這些優化技術,您可以有效地處理巨大的 CSV 文件,而不會遇到記憶體障礙。
以上是如何在 Python 2.7 中有效處理巨大的 CSV 檔案而不遇到記憶體問題?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

文章討論了虛擬環境在Python中的作用,重點是管理項目依賴性並避免衝突。它詳細介紹了他們在改善項目管理和減少依賴問題方面的創建,激活和利益。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3漢化版
中文版,非常好用