搜尋
首頁後端開發Python教學Pandas 中的鍊式分配什麼時候會出現問題?

When Do Chained Assignments Become Problematic in Pandas?

了解Pandas 中的鍊式賦值

簡介:

使用Pandas 時,使用者可能會遇到「 SettingWithCopy」警告:引起對資料結構操作行為的關注。本文旨在闡明鍊式賦值的概念及其在 Pandas 中的意義,特別關注 .ix()、.iloc() 和 .loc() 的作用。

鍊式賦值解釋

在 Pandas 中,鍊式分配涉及在 DataFrame 或 Series 上執行的一系列操作,這些操作將值分配給特定的列或元素。但是,直接為 Series 或 DataFrame 賦值可能會因創建潛在副本而導致意外行為。

偵測鍊式分配

當 Pandas 懷疑鍊式分配被破壞時,它會發出警告 (SettingWithCopyWarnings)正在被使用。這些警告旨在提醒使用者可能出現的意外後果,因為它們可能會導致資料副本被修改,從而造成混亂。

.ix()、.iloc() 和.loc() 對Chained 的影響賦值

.ix()、.iloc() 或.loc() 方法的選擇不會直接影響鍊式賦值。這些方法主要用於行和列選擇,不會影響賦值的行為。

鍊式賦值的後果

鍊式賦值可能會導致意外結果,例如資料副本被複製修改而不是原始物件。這可能會導致混亂,並使其難以追蹤更改和識別資料的正確狀態。

避免鍊式分配和警告

為了避免鍊式分配及其產生的警告,建議對資料副本而不是原始物件執行操作。這可確保將變更套用到所需位置而不會出現任何歧義。

停用連結分配警告

如果需要,使用者可以透過將「chained_assignment」選項設為「None」來停用連結警告使用 pd.set_option()。但是,通常不建議停用這些警告,因為它們是潛在問題的寶貴指標。

鍊式分配範例

考慮原始請求中提供的範例:

data['amount'] = data['amount'].astype(float)
data["amount"].fillna(data.groupby("num")["amount"].transform("mean"), inplace=True)
data["amount"].fillna(mean_avg, inplace=True)

在此範例中,第一行將數值指派給「amount」欄,這可能會也可能不會建立副本。後續行對「金額」列進行操作,該列可能是副本而不是原始資料。將 fillna() 操作的結果分配給新列或變數而不是直接修改“amount”列更為明確。

推薦程式碼

避免在提供範例,建議使用以下程式碼:

new_amount = data["amount"].fillna(data.groupby("num")["amount"].transform("mean"))
data["new_amount"] = new_amount.fillna(mean_avg)

以上是Pandas 中的鍊式分配什麼時候會出現問題?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
我如何使用美麗的湯來解析HTML?我如何使用美麗的湯來解析HTML?Mar 10, 2025 pm 06:54 PM

本文解釋瞭如何使用美麗的湯庫來解析html。 它詳細介紹了常見方法,例如find(),find_all(),select()和get_text(),以用於數據提取,處理不同的HTML結構和錯誤以及替代方案(SEL)

如何解決Linux終端中查看Python版本時遇到的權限問題?如何解決Linux終端中查看Python版本時遇到的權限問題?Apr 01, 2025 pm 05:09 PM

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

Python中的數學模塊:統計Python中的數學模塊:統計Mar 09, 2025 am 11:40 AM

Python的statistics模塊提供強大的數據統計分析功能,幫助我們快速理解數據整體特徵,例如生物統計學和商業分析等領域。無需逐個查看數據點,只需查看均值或方差等統計量,即可發現原始數據中可能被忽略的趨勢和特徵,並更輕鬆、有效地比較大型數據集。 本教程將介紹如何計算平均值和衡量數據集的離散程度。除非另有說明,本模塊中的所有函數都支持使用mean()函數計算平均值,而非簡單的求和平均。 也可使用浮點數。 import random import statistics from fracti

python對象的序列化和避難所化:第1部分python對象的序列化和避難所化:第1部分Mar 08, 2025 am 09:39 AM

Python 對象的序列化和反序列化是任何非平凡程序的關鍵方面。如果您將某些內容保存到 Python 文件中,如果您讀取配置文件,或者如果您響應 HTTP 請求,您都會進行對象序列化和反序列化。 從某種意義上說,序列化和反序列化是世界上最無聊的事情。誰會在乎所有這些格式和協議?您想持久化或流式傳輸一些 Python 對象,並在以後完整地取回它們。 這是一種在概念層面上看待世界的好方法。但是,在實際層面上,您選擇的序列化方案、格式或協議可能會決定程序運行的速度、安全性、維護狀態的自由度以及與其他系

如何使用TensorFlow或Pytorch進行深度學習?如何使用TensorFlow或Pytorch進行深度學習?Mar 10, 2025 pm 06:52 PM

本文比較了Tensorflow和Pytorch的深度學習。 它詳細介紹了所涉及的步驟:數據準備,模型構建,培訓,評估和部署。 框架之間的關鍵差異,特別是關於計算刻度的

用美麗的湯在Python中刮擦網頁:搜索和DOM修改用美麗的湯在Python中刮擦網頁:搜索和DOM修改Mar 08, 2025 am 10:36 AM

該教程建立在先前對美麗湯的介紹基礎上,重點是簡單的樹導航之外的DOM操縱。 我們將探索有效的搜索方法和技術,以修改HTML結構。 一種常見的DOM搜索方法是EX

哪些流行的Python庫及其用途?哪些流行的Python庫及其用途?Mar 21, 2025 pm 06:46 PM

本文討論了諸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和請求等流行的Python庫,並詳細介紹了它們在科學計算,數據分析,可視化,機器學習,網絡開發和H中的用途

如何使用Python創建命令行接口(CLI)?如何使用Python創建命令行接口(CLI)?Mar 10, 2025 pm 06:48 PM

本文指導Python開發人員構建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等庫詳細介紹,強調輸入/輸出處理,並促進用戶友好的設計模式,以提高CLI可用性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
2 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
2 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具