Rajah 1: Rajah 1: Rajah 1: Gambar rajah kerangka Pembelajaran Ejen Kepada membolehkan perambatan belakang tradisional dan keturunan kecerunan untuk mengendalikan ruang berat simbolik, rangka kerja pembelajaran simbolik agen menggunakan teks dan model besar + perkataan segera Model pendekatan kehilangan, fungsi kehilangan, proses perambatan belakang, kecerunan, dan pengoptimum berasaskan kecerunan. Khususnya, semasa proses perambatan ke hadapan, rangka kerja menyimpan input, berat dan output setiap lapisan dalam graf pengiraan. Seterusnya, melalui kaedah model besar + perkataan gesaan, input, output dan perihalan tugas keseluruhan sampel semasa digabungkan dalam kata gesaan, dan kemudian model bahasa besar mengeluarkan penilaian dan ringkasan penyiapan tugas sampel semasa. Penilaian/ringkasan yang diperolehi dalam bentuk teks, sama seperti kehilangan dalam rangkaian saraf, digunakan untuk mengukur kualiti penyiapan tugasan Pasukan penyelidik memanggilnya "kehilangan bentuk teks", iaitu kehilangan berasaskan bahasa. Selepas itu, penyelidikan menggunakan model bahasa yang besar dan direka bentuk dengan teliti kejuruteraan kata cepat untuk menjana "refleksi" pada nod terakhir dalam proses ejen. Refleksi termasuk cara output model harus berubah untuk memenuhi keperluan dengan lebih baik, dan cara perkataan serta panggilan alat yang cepat harus dioptimumkan untuk membuat output berubah ke arah sedemikian. Kandungan ini betul-betul sama dengan peranan kecerunan dalam pengoptimuman rangkaian saraf Kedua-duanya mengandungi maklumat tentang cara parameter harus dilaraskan untuk meminimumkan kehilangan keseluruhan model Oleh itu, pasukan penyelidik memanggil refleksi ini "kecerunan teks". , kecerunan berasaskan bahasa. Perkara seterusnya yang perlu dilakukan ialah mendapatkan kecerunan setiap lapisan dari belakang ke hadapan, yang penting untuk pengoptimuman rangkaian saraf. Diilhamkan oleh perambatan belakang formula berasaskan peraturan rantai dalam rangkaian saraf, penyelidik di Waveform Intelligence mensimulasikan peraturan rantaian pengoptimuman rangkaian saraf tradisional dengan satu set gesaan yang direka dengan teliti melalui teks dan model besar. Khususnya, set gesaan ini membenarkan model besar berdasarkan maklumat kecerunan lapisan sebelumnya (iaitu refleksi pada tugas yang dilakukan oleh lapisan sebelumnya) dan input, output dan berat lapisan ini (input ini adalah selaras sepenuhnya dengan parameter dalam formula perambatan belakang Sepadan), keluarkan refleksi pada penggunaan segera/alatan nod semasa, iaitu, kecerunan berasaskan bahasa lapisan semasa. Skim perambatan balik berasaskan teks ini membolehkan penyelidikan ini mendapatkan kecerunan parameter setiap nod/lapisan dalam ejen yang mengandungi berbilang nod dan aliran kerja yang kompleks, supaya setiap gesaan dan alat boleh dioptimumkan secara langsung untuk keseluruhan ejen , dengan itu mencapai pengoptimuman bersama hujung ke hujung. Akhir sekali, selepas memperoleh kecerunan berasaskan bahasa bagi setiap set parameter, rangka kerja menggunakan pengoptimum berdasarkan model besar, menggunakan gesaan yang direka dengan teliti, perkataan gesaan dan panggilan alat untuk setiap lapisan dan kecerunan berasaskan teks . Sebagai input, gesaan dan alat yang dioptimumkan adalah output untuk mengemas kini parameter ejen. Selain itu, rangka kerja juga menyokong pengoptimuman struktur rangkaian, iaitu aliran kerja ejen. Secara khusus, rangka kerja menyatakan aliran kerja ejen dalam bahasa pengaturcaraan tertentu, supaya "graf pengiraan" rangkaian ejen juga diproses menjadi pemberat simbolik. Kemudian, melalui pengoptimum berasaskan model besar yang direka secara berasingan, aliran kerja ejen dikemas kini menggunakan aliran kerja ejen semasa dan kecerunan dalam bentuk teks setiap nod dalam aliran kerja sebagai input. Ini boleh dibandingkan dengan penyelidikan berkaitan carian struktur rangkaian automatik dalam latihan rangkaian saraf. ... Rajah 4 Keputusan eksperimen ejen tugasan peringkat Penyelidik Perisikan Bentuk Gelombang menilai algoritma pada satu siri penanda aras untuk model dan ejen besar, seperti yang ditunjukkan dalam Rajah 3 dan 4 Ia menunjukkan bahawa ejen simbolik pembelajaran telah meningkat dengan ketara pada pelbagai tugas berbanding dengan DSpy dan rangka kerja ejen tradisional tanpa keupayaan pembelajaran Dalam sesetengah tugas, ia juga boleh menggunakan GPT-3.5 untuk bersaing dengan rangka kerja ejen lain. Walau bagaimanapun, hanya menggunakan algoritma pengoptimuman automatik perkataan gesaan tempatan (AutoPE) berdasarkan model bahasa yang besar untuk perkataan gesaan dalam setiap nod dalam ejen tidak boleh mencapai hasil yang jelas. Di samping itu, seperti yang ditunjukkan dalam Rajah 5, dalam tugasan penulisan kreatif, algoritma telah berkembang secara bebas daripada agen nod tunggal awal yang hanya menulis berdasarkan satu perkataan gesaan kepada aliran kerja yang menyokong penulisan + penyuntingan, dan perkataan gesaan bagi menulis nod Dikemas kini dan dioptimumkan. S Rajah 5 Rangka Kerja Pembelajaran Simbolik Agen Kesan Kesan Pembelajaran (ambil tugasan penulisan kreatif sebagai contoh) Pasukan penyelidik kecerdasan bentuk gelombang memperkenalkan dua senario aplikasi Pembelajaran Simbolik Agen. Pertama, rangka kerja itu boleh digunakan oleh pembangun atau penyelidik untuk mencipta dan menala sistem ejen. Seperti latihan rangkaian saraf, pembangun dan penyelidik boleh mengumpul (atau menggunakan penjanaan automatik yang disediakan dalam rangka kerja) sejumlah besar sampel untuk tugasan tertentu, dan kemudian menggunakan rangka kerja untuk melengkapkan latihan ejen "berpusatkan data" secara besar-besaran. jumlah data selepas latihan dan pengoptimuman, sama seperti penggunaan ejen biasa, ejen yang dioptimumkan digunakan secara statik dalam persekitaran pengeluaran. Selain itu, satu lagi senario aplikasi penting rangka kerja ini adalah untuk menyokong Ejen yang boleh berkembang secara autonomi dalam persekitaran/interaksi. Khususnya, kerana rangka kerja latihan itu sendiri hanya perlu memanggil keupayaan model besar tanpa latihan dan penggunaan berasaskan GPU yang kompleks, Ejen boleh menggunakan rangka kerja latihan sebagai alat yang boleh dipanggil dengan meneroka persekitaran Atau dalam proses berinteraksi dengan manusia, ia secara berterusan mengumpul sampel latihan baharu, secara kerap atau aktif memanggil alatan algoritma untuk latihan ejen, dan mengemas kini gesaan, alatan dan aliran kerjanya sendiri. Waveform Intelligence juga menyokong logik penggunaan sedemikian dalam pangkalan kod sumber terbuka Ejen AIWaves, merealisasikan sistem ejen pertama yang boleh terus berkembang dan berulang secara bebas selepas digunakan pada produk dan persekitaran pengeluaran sebenar. Rangka kerja Pembelajaran Simbolik Ejen menganggap AI Ejen sebagai "rangkaian saraf" simbolik yang disambungkan oleh gesaan dan alatan dalam aliran kerja yang kompleks Dengan mensimulasikan perambatan balik dan turunan kecerunan berdasarkan bahasa semula jadi, ia membolehkan Ejen berasaskan model berskala besar. boleh mengoptimumkan "parameter rangkaian" sendiri secara bebas, iaitu gesaan dan alatan, dan "struktur rangkaian", iaitu aliran kerja ejen, dengan itu mencapai kecerdasan yang boleh menggunakan sejumlah besar data dan pengalaman dengan cekap serta menjalankan "pembelajaran berpusatkan data. " Rangka kerja ejen membolehkan sistem ejen pintar yang boleh terus berkembang secara autonomi. Pada masa ini, rangka kerja ini telah memainkan peranan dalam pelbagai produk dan aplikasi Waveform Intelligence, menyelesaikan masalah pengoptimuman manual yang sukar dan penilaian Ejen. Untuk mempromosikan pembangunan dan penyelidikan "Ejen Berpusatkan Data" dan "Pembelajaran Agen", pasukan penyelidik Waveform Intelligence juga telah membuka sumber semua kod algoritma Kami menantikan kalangan akademik dan industri di lapangan daripada ejen pintar meneroka algoritma dan aplikasi yang lebih menarik bersama-sama.