


Google: Kaedah baharu untuk mempelajari perwakilan siri masa dengan pensampelan frekuensi tidak sama
Dalam masalah siri masa, terdapat jenis siri masa yang tidak diambil sampel pada frekuensi yang sama, iaitu selang masa antara dua cerapan bersebelahan dalam setiap kumpulan adalah berbeza. Pembelajaran perwakilan siri masa telah banyak dikaji dalam siri masa pensampelan frekuensi sama, tetapi terdapat kurang penyelidikan dalam siri masa pensampelan tidak teratur ini, dan kaedah pemodelan siri masa jenis ini berbeza daripada pensampelan frekuensi sama di sana ialah perbezaan besar dalam kaedah pemodelan
Artikel yang diperkenalkan hari ini meneroka kaedah aplikasi pembelajaran perwakilan dalam masalah siri masa pensampelan tidak teratur, menggunakan pengalaman yang relevan dalam NLP dan mencapai hasil perbandingan dalam tugasan hiliran.
Pictures
- paper Tajuk: Paits: Pretraining and Augmentation for Series TimeDownload Time tidak teratur: https://arxiv.org/pdf/2308.13703v1.pdf
- 1 definisi data
Berikut ialah perwakilan data siri masa yang tidak teratur, seperti yang ditunjukkan dalam rajah di bawah. Setiap siri masa terdiri daripada satu set triple Setiap triple mengandungi tiga medan: masa, nilai dan ciri, yang masing-masing mewakili masa pensampelan, nilai dan ciri lain bagi setiap elemen dalam siri masa. Selain tiga kali ganda ini, setiap jujukan juga termasuk ciri statik lain yang tidak berubah dari semasa ke semasa, serta label untuk setiap siri masa
gambarSecara amnya kaedah pemodelan siri masa yang tidak teratur ini, struktur biasa Data tiga kali ganda di atas dibenamkan secara berasingan, disambungkan bersama, dan dimasukkan ke dalam model seperti transformer Dengan cara ini, maklumat pada setiap saat dan perwakilan masa pada setiap saat disepadukan dan dimasukkan ke dalam model untuk meramalkan tugasan berikutnya.
GambarDalam tugasan artikel ini, data yang digunakan termasuk bukan sahaja data berlabel, tetapi juga data tidak berlabel untuk pra-latihan tanpa pengawasan.
2. Gambaran Keseluruhan Kaedah
Kaedah pra-latihan dalam artikel ini merujuk kepada pengalaman dalam bidang pemprosesan bahasa semula jadi dan terutamanya merangkumi dua aspek
Reka bentuk tugasan pra-latihan: Untuk mengendalikan siri masa yang tidak teratur, sesuai pra-latihan perlu direka Tugas membolehkan model mempelajari perwakilan yang berkesan daripada data yang tidak diselia. Artikel ini terutamanya memperkenalkan dua tugasan pra-latihan berdasarkan ramalan dan berasaskan pembinaan semula
Reka bentuk kaedah peningkatan data: Dalam kajian ini, kaedah peningkatan data untuk pembelajaran tanpa pengawasan telah direka, termasuk menambah bunyi, menambah topeng rawak, dll.
Di samping itu, artikel itu juga memperkenalkan algoritma untuk set data teragih yang berbeza untuk meneroka kaedah pembelajaran tanpa pengawasan yang optimum
3 Reka bentuk tugasan pra-latihan
Artikel ini mencadangkan dua tugasan pra-latihan pada siri masa yang tidak teratur, masing-masing, ialah Peramalan pralatihan. dan Pralatihan Pembinaan Semula.
Dalam pralatihan Ramalan, untuk setiap ciri dalam siri masa, nilainya diramalkan berdasarkan urutan prapesanan tetingkap masa dengan saiz tertentu. Ciri di sini merujuk kepada ciri dalam triplet. Memandangkan setiap ciri mungkin muncul beberapa kali dalam tetingkap masa, atau mungkin tidak muncul sama sekali, nilai kejadian pertama ciri ini digunakan sebagai label untuk pra-latihan. Data input termasuk siri asal dan siri masa yang dipertingkatkan.
Dalam pra-latihan pembinaan semula, pertama, untuk siri masa asal, urutan dipertingkatkan dijana melalui beberapa kaedah peningkatan data, dan kemudian urutan dipertingkat digunakan sebagai input, dan vektor perwakilan dijana oleh pengekod, dan kemudian input kepada penyahkod Pulihkan siri masa asal dalam pemproses. Artikel menggunakan topeng untuk membimbing bahagian urutan yang perlu dipulihkan Jika topeng adalah semua 1, keseluruhan urutan dipulihkan Selepas mendapatkan parameter pra-latihan, ia boleh digunakan secara langsung pada tugas finetune hiliran keseluruhan proses pralatihan-finetune Seperti yang ditunjukkan di bawah.
Gambar
4. Reka bentuk kaedah peningkatan dataDalam artikel ini, kami mencadangkan dua kaedah peningkatan data. Kaedah pertama ialah menambah hingar, dengan memperkenalkan beberapa gangguan rawak dalam data untuk meningkatkan kepelbagaian data. Kaedah kedua ialah pelekat rawak, yang menggalakkan model untuk mempelajari ciri yang lebih mantap dengan memilih secara rawak beberapa bahagian data untuk ditutup. Kaedah peningkatan data ini boleh membantu kami meningkatkan prestasi dan keupayaan generalisasi model
Untuk setiap nilai atau titik masa jujukan asal, hingar boleh ditambah dengan menambahkan hingar Gaussian. Kaedah pengiraan khusus adalah seperti berikut:
Gambar
Kaedah topeng rawak menggunakan idea daripada NLP, dan membina siri masa yang dipertingkatkan dengan memilih masa, ciri, nilai dan elemen lain secara rawak untuk topeng dan penggantian rawak.
Rajah berikut menunjukkan kesan dua jenis kaedah peningkatan data di atas:
Gambar
Selain itu, artikel tersebut menggunakan gabungan peningkatan data, kaedah pra-latihan, dsb., untuk siri masa yang berbeza data, daripada gabungan ini Cari kaedah pra-latihan yang optimum.
5. Keputusan eksperimen
Dalam artikel ini, percubaan telah dijalankan pada berbilang set data untuk membandingkan kesan kaedah pra-latihan yang berbeza pada set data ini. Dapat diperhatikan bahawa kaedah pra-latihan yang dicadangkan dalam artikel telah mencapai peningkatan yang ketara pada kebanyakan set data
Atas ialah kandungan terperinci Google: Kaedah baharu untuk mempelajari perwakilan siri masa dengan pensampelan frekuensi tidak sama. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Menjalankan model bahasa besar di rumah dengan mudah: Panduan Pengguna Studio LM Dalam tahun -tahun kebelakangan ini, kemajuan dalam perisian dan perkakasan telah memungkinkan untuk menjalankan model bahasa besar (LLM) pada komputer peribadi. LM Studio adalah alat yang sangat baik untuk menjadikan proses ini mudah dan mudah. Artikel ini akan menyelam bagaimana untuk menjalankan LLM secara tempatan menggunakan LM Studio, yang meliputi langkah -langkah utama, cabaran yang berpotensi, dan manfaat mempunyai LLM secara tempatan. Sama ada anda seorang peminat teknologi atau ingin tahu tentang teknologi AI terkini, panduan ini akan memberikan pandangan yang berharga dan tip praktikal. Mari mulakan! Gambaran Keseluruhan Memahami keperluan asas untuk menjalankan LLM secara tempatan. Sediakan studi lm di komputer anda

Guy Peri adalah maklumat utama dan pegawai digital McCormick. Walaupun hanya tujuh bulan ke dalam peranannya, Peri pesat memajukan transformasi komprehensif keupayaan digital syarikat. Tumpuan kerjaya beliau terhadap data dan analisis memberitahu

Pengenalan Kecerdasan buatan (AI) berkembang untuk memahami bukan hanya kata -kata, tetapi juga emosi, bertindak balas dengan sentuhan manusia. Interaksi yang canggih ini penting dalam bidang pemprosesan AI dan bahasa semulajadi yang pesat memajukan. Th

Pengenalan Di dunia yang berpusatkan data hari ini, memanfaatkan teknologi AI yang maju adalah penting bagi perniagaan yang mencari kecekapan dan kecekapan yang dipertingkatkan. Pelbagai alat yang berkuasa memberi kuasa kepada saintis data, penganalisis, dan pemaju untuk membina, DEPL

Landskap AI minggu ini meletup dengan siaran terobosan dari gergasi industri seperti Openai, Mistral AI, Nvidia, Deepseek, dan memeluk muka. Model -model baru ini menjanjikan peningkatan kuasa, kemampuan, dan kebolehaksesan, didorong oleh kemajuan dalam TR

Tetapi aplikasi Android syarikat, yang bukan sahaja menawarkan keupayaan carian tetapi juga bertindak sebagai pembantu AI, penuh dengan pelbagai isu keselamatan yang dapat mendedahkan penggunanya kepada kecurian data, pengambilalihan akaun dan serangan penyamaran dari berniat jahat

Anda boleh melihat apa yang berlaku dalam persidangan dan di pameran perdagangan. Anda boleh meminta jurutera apa yang mereka lakukan, atau berunding dengan CEO. Di mana sahaja anda melihat, perkara berubah pada kelajuan pecah. Jurutera, dan bukan jurutera Apa perbezaannya

Simulasi Rocket dilancarkan dengan Rocketpy: Panduan Komprehensif Artikel ini membimbing anda melalui mensimulasikan pelancaran roket kuasa tinggi menggunakan Rocketpy, perpustakaan Python yang kuat. Kami akan merangkumi segala -galanya daripada menentukan komponen roket untuk menganalisis simula


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

SecLists
SecLists ialah rakan penguji keselamatan muktamad. Ia ialah koleksi pelbagai jenis senarai yang kerap digunakan semasa penilaian keselamatan, semuanya di satu tempat. SecLists membantu menjadikan ujian keselamatan lebih cekap dan produktif dengan menyediakan semua senarai yang mungkin diperlukan oleh penguji keselamatan dengan mudah. Jenis senarai termasuk nama pengguna, kata laluan, URL, muatan kabur, corak data sensitif, cangkerang web dan banyak lagi. Penguji hanya boleh menarik repositori ini ke mesin ujian baharu dan dia akan mempunyai akses kepada setiap jenis senarai yang dia perlukan.

EditPlus versi Cina retak
Saiz kecil, penyerlahan sintaks, tidak menyokong fungsi gesaan kod

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

PhpStorm versi Mac
Alat pembangunan bersepadu PHP profesional terkini (2018.2.1).