Rumah >Peranti teknologi >AI >Kajian semula model pembelajaran mendalam: aplikasi untuk imbasan MRI dan CT 3D

Kajian semula model pembelajaran mendalam: aplikasi untuk imbasan MRI dan CT 3D

WBOY
WBOYke hadapan
2023-08-15 10:53:04824semak imbas

Salah satu perbezaan utama antara data pengimejan perubatan dan imej harian yang lain ialah ia biasanya 3D, terutamanya apabila berurusan dengan data siri DICOM. Imej DICOM terdiri daripada berbilang kepingan 2D dan digunakan untuk mengimbas atau mewakili bahagian tertentu badan

深度学习模型综述:用于3D MRI和CT扫描的应用

Dalam artikel ini, kami akan memperkenalkan 6 seni bina rangkaian saraf untuk melatih model pembelajaran mendalam bagi menyelesaikan masalah dengan data perubatan 3D

3d U-Net

3D U-Net ialah model pembahagian imej perubatan yang berkuasa, yang memanjangkan model U-Net klasik kepada segmentasi 3D dan terdiri daripada laluan pengekodan dan laluan penyahkodan

3D U-Net Apabila memproses imej volumetrik, maklumat kontekstual ditangkap melalui laluan pengekodan dan kedudukan tepat dicapai melalui laluan penyahkodan, menunjukkan keupayaan pemprosesan ciri 3D yang cekap

深度学习模型综述:用于3D MRI和CT扫描的应用

V-Net

V-Net ialah kaedah untuk imej volumetrik Tersegmen rangkaian saraf konvolusi 3D, yang menggunakan resolusi penuh Konvolusi 3D dan oleh itu lebih mahal dari segi pengiraan daripada U-Net

深度学习模型综述:用于3D MRI和CT扫描的应用

HighResNet

Model ini melalui satu siri lilitan 3D dengan sambungan baki Lapisan kumulatif dilatih hujung-ke-hujung dan boleh memproses keseluruhan imej 3D secara serentak

深度学习模型综述:用于3D MRI和CT扫描的应用

EfficientNet3D

Walaupun penambahbaikan 3D EfficientNet tidak digunakan secara meluas untuk segmentasi 3D seperti U-Net atau V-Net, ia boleh digunakan dalam situasi di mana sumber pengkomputeran adalah terhad memandangkan ia memberikan keseimbangan yang baik antara kos pengiraan dan prestasi

深度学习模型综述:用于3D MRI和CT扫描的应用

Perhatian U-Net

Varian ini berdasarkan U-Net, yang memperkenalkan mekanisme daya perhatian yang membolehkan rangkaian memfokus pada bahagian tertentu imej relevan dengan tugas semasa

深度学习模型综述:用于3D MRI和CT扫描的应用

DeepMedic

CNN 3D ini menggunakan dwi laluan, salah satunya adalah resolusi biasa dan satu lagi adalah menurunkan Input untuk memanfaatkan maklumat kontekstual tempatan dan lebih besar

深度学习模型综述:用于3D MRI和CT扫描的应用

Ringkasan dalam artikel ini , kami meneroka beberapa model pembelajaran mendalam yang digunakan dalam industri pengimejan perubatan untuk memproses imbasan MRI dan CT 3D. Rangkaian saraf ini direka bentuk untuk menerima data 3D sebagai input untuk mempelajari ciri kompleks bahagian badan tertentu dalam siri DICOM

Atas ialah kandungan terperinci Kajian semula model pembelajaran mendalam: aplikasi untuk imbasan MRI dan CT 3D. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan:
Artikel ini dikembalikan pada:51cto.com. Jika ada pelanggaran, sila hubungi admin@php.cn Padam