Rumah >Peranti teknologi >AI >Python Deep Learning 18-DeepDream of Generative Deep Learning
DeepDream ialah teknologi pengubahsuaian imej artistik, yang terutamanya berdasarkan rangkaian neural convolutional terlatih CNN untuk menjana imej.
Apabila menjana imej, rangkaian saraf dibekukan, iaitu berat rangkaian tidak lagi dikemas kini, hanya imej input sahaja yang perlu dikemas kini. Rangkaian konvolusi terlatih yang biasa digunakan termasuk Google's Inception, rangkaian VGG dan rangkaian ResNet, dsb.
Langkah asas DeePDream:
Ulang langkah 2, 3 dan 4 sehingga syarat yang ditetapkan dipenuhi
Berikut ialah proses umum menggunakan Keras untuk melaksanakan DeepDream:
Dalam [1]:
# --------------- from tensorflow import keras import matplotlib.pyplot as plt %matplotlib inline base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) plt.show()
Di atas adalah gambar garis pantai yang datang bersama Keras. Berikut adalah perubahan pada gambar ini.
Dalam [2]:
# 使用Inception V3实现 from keras.applications import inception_v3 # 使用预训练的ImageNet权重来加载模型 model = inception_v3.InceptionV3(weights="imagenet", # 构建不包含全连接层的Inceptino include_top=False) Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5 87916544/87910968 [==============================] - 74s 1us/step 87924736/87910968 [==============================] - 74s 1us/step
Dalam [3]:
model.summary()
Dalam [4]:
# 层的名称 + 系数:该层对需要最大化的损失的贡献大小 layer_settings = {"mixed4":1.0, "mixed5":1.5, "mixed6":2.0, "mixed7":2.5} outputs_dict = dict( [ (layer.name, layer.output) # 层的名字 + 该层的输出 for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) outputs_dict
Keluar[4]:
{'mixed4': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed4')>, 'mixed5': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed5')>, 'mixed6': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed6')>, 'mixed7': <KerasTensor: shape=(None, None, None, 768) dtype=float32 (created by layer 'mixed7')>}
Dalam [5 ]:
# 特征提取 feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) feature_extractor
Keluar[5]:
<keras.engine.functional.Functional at 0x15b5ff0d0>
Dalam [6]:
def compute_loss(image): features = feature_extractor(image)# 特征提取 loss = tf.zeros(shape=())# 损失初始化 for name in features.keys():# 遍历层 coeff = layer_settings[name] # 某个层的系数 activation = features[name]# 某个层的激活函数 #为了避免出现边界伪影,损失中仅包含非边界的像素 loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) # 将该层的L2范数添加到loss中; return loss
Dalam [7]:
import tensorflow as tf @tf.function def gradient_ascent_step(image, lr): # lr--->learning_rate学习率 with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image)# 调用计算损失方法 grads = tape.gradient(loss, image)# 梯度更新 grads = tf.math.l2_normalize(grads) image += lr * grads return loss, image def gradient_ascent_loop(image, iterations, lr, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, lr) if max_loss is not None and loss > max_loss: break print(f"第{i}步的损失值是{loss:.2f}") return image
Dalam [8]:
import numpy as np array = np.array([[1,2,3], [4,5,6]] ) array
Keluar[8]:
array([[1, 2, 3], [4, 5, 6]])
Dalam [9]:
array.shape
Keluar[9]:
(2, 3)
Dalam [ 10]:
array1 = np.expand_dims(array,axis=0) array1
Keluar[10]:
array([[[1, 2, 3], [4, 5, 6]]])
Dalam [11]:
array1.shape
Keluar[11]:
(1, 2, 3)
Dalam [12]:
array2 = np.expand_dims(array,axis=1) array2
Keluar[12]:
array([[[1, 2, 3]], [[4, 5, 6]]])
Dalam [13]:
array2.shape
Keluar[ 13] :
(2, 1, 3)
Dalam [14]:
array3 = np.expand_dims(array,axis=-1) array3
Keluar[14]:
array([[[1], [2], [3]], [[4], [5], [6]]])
Dalam [15]:
array3.shape
Keluar[15]:
(2, 3, 1)
np.clip( array, min(array), max(array), out=None):
Dalam [16]:
array = np.array([1,2,3,4,5,6]) np.clip(array, 2, 5)# 输出长度和原数组相同
Keluar [16 ]:
array([2, 2, 3, 4, 5, 5])
Dalam [17]:
array = np.arange(18).reshape((6,3)) array
Keluar[17]:
array([[ 0,1,2], [ 3,4,5], [ 6,7,8], [ 9, 10, 11], [12, 13, 14], [15, 16, 17]])
Dalam [18]:
np.clip(array, 5, 15)
Keluar[18]:
array([[ 5,5,5], [ 5,5,5], [ 6,7,8], [ 9, 10, 11], [12, 13, 14], [15, 15, 15]])
Dalam [19]:
step = 20.#梯度上升的步长 num_octave = 3# 运行梯度上升的尺度个数 octave_scale = 1.4# 两个尺度间的比例大小 iterations = 30# 在每个尺度上运行梯度上升的步数 max_loss = 15.# 损失值若大于15,则中断梯度上升过程
Dalam [ 20]:
import numpy as np def preprocess_image(image_path):# 预处理 img = keras.utils.load_img(image_path)# 导入图片 img = keras.utils.img_to_array(img)# 转成数组 img = np.expand_dims(img, axis=0)# 增加数组维度;见上面解释(x,y) ---->(1,x,y) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img):# 图片压缩处理 img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. # np.clip:截断功能,保证数组中的取值在0-255之间 img = np.clip(img, 0, 255).astype("uint8") return img
Dalam [21]:
# step = 20.#梯度上升的步长 # num_octave = 3# 运行梯度上升的尺度个数 # octave_scale = 1.4# 两个尺度间的比例大小 # iterations = 30# 在每个尺度上运行梯度上升的步数 # max_loss = 15.0# 损失值若大于15,则中断梯度上升过程 original_img = preprocess_image(base_image_path)# 预处理函数 original_shape = original_img.shape[1:3] print(original_img.shape)# 四维图像 print(original_shape)# 第2和3维度的值 (1, 900, 1200, 3) (900, 1200)
Dalam [22]:
successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1]# 翻转 shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") # resize img = tf.image.resize(img, shape) img = gradient_ascent_loop(# 梯度上升函数调用 img, iteratinotallow=iterations, lr=step, max_loss=max_loss ) # resize upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("dream.png", deprocess_image(img.numpy()))
The keputusannya ialah :
Processing octave 0 with shape (459, 612) 第0步的损失值是0.80 第1步的损失值是1.07 第2步的损失值是1.44 第3步的损失值是1.82 ...... 第26步的损失值是11.44 第27步的损失值是11.72 第28步的损失值是12.03 第29步的损失值是12.49
Pada masa yang sama, imej baharu dijana secara setempat Lihat kesannya:
<.> Lihat sekali lagi pada imej asal: relatif Sebagai perbandingan, gambar-gambar baru mempunyai sedikit rasa termenung!Atas ialah kandungan terperinci Python Deep Learning 18-DeepDream of Generative Deep Learning. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!