cari
RumahPeranti teknologiAIArtikel yang menerangkan kesukaran teknikal utama pemanduan autonomi
Artikel yang menerangkan kesukaran teknikal utama pemanduan autonomiMay 15, 2023 am 11:19 AM
teknologiPemanduan autonomi

Persatuan Jurutera Automotif membahagikan pemanduan autonomi kepada enam tahap, L0-L5, berdasarkan tahap kecerdasan kenderaan:

  • L0 adalah Tiada Automasi , NA), iaitu kereta tradisional, pemandu melakukan semua tugas pengendalian, seperti stereng, brek, pecutan, nyahpecutan atau tempat letak kereta, dll.; Pembantu Pemanduan (DA) boleh memberi amaran atau bantuan pemanduan kepada pemandu, seperti memberikan sokongan untuk satu operasi stereng atau pecutan dan nyahpecutan, dan selebihnya dikendalikan oleh pemandu

  • L2 ialah Automasi Separa (PA) Kenderaan menyediakan pemanduan untuk berbilang operasi dalam stereng dan pecutan dan nyahpecutan, dan pemandu bertanggungjawab untuk operasi pemanduan yang lain; >

    L3 ialah Automasi Bersyarat (CA), iaitu, sistem pemanduan automatik melengkapkan kebanyakan operasi pemanduan, dan pemandu perlu menumpukan perhatian sekiranya berlaku kecemasan


  • L4 ialah Automasi Tinggi (HA), di mana semua operasi pemanduan diselesaikan oleh kenderaan, tetapi keadaan jalan dan persekitaran adalah terhad; >
  • L5 ialah Automasi Penuh (FA) Di bawah sebarang keadaan jalan raya dan persekitaran, sistem pemanduan autonomi melengkapkan semua operasi pemanduan, dan pemandu tidak perlu menumpukan perhatian.



  • Seni bina perisian dan perkakasan kereta pandu sendiri ditunjukkan dalam Rajah 2, yang kebanyakannya dibahagikan menjadi lapisan kesedaran alam sekitar, lapisan membuat keputusan dan perancangan, lapisan kawalan dan lapisan pelaksanaan. Lapisan pengecaman alam sekitar (persepsi) terutamanya memperoleh maklumat persekitaran kenderaan dan maklumat status kenderaan melalui penderia seperti lidar, radar gelombang milimeter, radar ultrasonik, kamera kenderaan, sistem penglihatan malam, GPS dan giroskop, khususnya termasuk: pengesanan garis lorong, lalu lintas pengecaman cahaya, pengecaman tanda lalu lintas, pengesanan pejalan kaki, pengesanan kenderaan, pengecaman halangan dan kedudukan kenderaan, dsb. lapisan membuat keputusan dan perancangan dibahagikan kepada perancangan tugas, perancangan tingkah laku dan perancangan trajektori, berdasarkan perancangan laluan yang ditetapkan dan persekitaran; . dan status kenderaan sendiri untuk merancang tugas pemanduan khusus seterusnya (menjaga lorong, menukar lorong, mengikut, memotong, mengelak perlanggaran, dsb.), tingkah laku (pecutan, nyahpecutan, membelok, brek, dll.) dan laluan (trajektori pemanduan) ; lapisan kawalan dan pelaksanaan Lapisan mengawal pemanduan kenderaan, brek, stereng, dsb. berdasarkan model sistem dinamik kenderaan, supaya kenderaan mengikut trajektori pemanduan yang ditetapkan.

Artikel yang menerangkan kesukaran teknikal utama pemanduan autonomi

Teknologi pemanduan autonomi melibatkan banyak teknologi utama Artikel ini memperkenalkan teknologi persepsi persekitaran, teknologi penentududukan ketepatan tinggi dan teknik membuat keputusan dan perancangan serta teknik kawalan dan pelaksanaan.

01 Teknologi Persepsi Alam Sekitar

Artikel yang menerangkan kesukaran teknikal utama pemanduan autonomi

Persepsi alam sekitar merujuk kepada keupayaan untuk memahami persekitaran, seperti jenis halangan, tanda jalan dan tanda, Pengesanan kenderaan memandu, klasifikasi bahasa maklumat trafik dan data lain. Penentududukan ialah pemprosesan pasca keputusan persepsi, yang membantu kenderaan memahami kedudukannya berbanding persekitarannya melalui fungsi penentududukan. Persepsi alam sekitar memerlukan mendapatkan sejumlah besar maklumat persekitaran sekitar melalui penderia untuk memastikan pemahaman yang betul tentang persekitaran sekeliling kenderaan dan membuat perancangan dan keputusan yang sepadan berdasarkan ini.

Penderia persepsi persekitaran yang biasa digunakan untuk kenderaan autonomi termasuk: kamera, lidar, radar gelombang milimeter, radar inframerah dan ultrasonik, dsb. Kamera ialah yang paling biasa digunakan, paling mudah dan paling hampir dengan prinsip pengimejan mata manusia bagi penderia persepsi alam sekitar untuk kenderaan autonomi. Dengan merakam persekitaran di sekeliling kenderaan dalam masa nyata, teknologi CV digunakan untuk menganalisis imej yang ditangkap untuk mencapai fungsi seperti pengesanan kenderaan dan pejalan kaki serta pengecaman tanda trafik di sekeliling kenderaan.

Kelebihan utama kamera ialah resolusi tinggi dan kos rendah. Walau bagaimanapun, dalam cuaca buruk seperti malam, hujan, salji, jerebu dan lain-lain, prestasi kamera akan menurun dengan cepat. Selain itu, jarak tontonan kamera adalah terhad dan ia tidak bagus pada pemerhatian jarak jauh.

Radar gelombang milimeter juga merupakan penderia yang biasa digunakan untuk kenderaan autonomi merujuk kepada radar yang berfungsi dalam jalur gelombang milimeter (panjang gelombang 1-10 mm, domain frekuensi 30-300GHz). Teknologi ToF (Masa Penerbangan) untuk mengesan objek sasaran. Radar gelombang milimeter secara berterusan menghantar isyarat gelombang milimeter ke dunia luar dan menerima isyarat yang dikembalikan oleh sasaran Ia menentukan jarak antara sasaran dan kenderaan berdasarkan perbezaan masa antara isyarat menghantar dan menerima. Oleh itu, radar gelombang milimeter digunakan terutamanya untuk mengelakkan perlanggaran antara kereta dan objek di sekeliling, seperti pengesanan titik buta, bantuan mengelakkan halangan, bantuan tempat letak kereta, pelayaran adaptif, dll. Radar gelombang milimeter mempunyai keupayaan anti-gangguan yang kuat, dan keupayaannya untuk menembusi hujan, pasir, habuk, asap dan plasma jauh lebih kuat daripada laser dan inframerah, dan ia boleh berfungsi pada semua cuaca. Walau bagaimanapun, ia juga mempunyai kelemahan seperti pengecilan isyarat yang besar, mudah disekat oleh bangunan, badan manusia, dll., jarak penghantaran yang pendek, resolusi rendah, dan kesukaran dalam pengimejan.

Lidar juga menggunakan teknologi ToF untuk menentukan lokasi dan jarak sasaran. LiDAR mengesan sasaran dengan memancarkan pancaran laser Ketepatan dan kepekaan pengesanannya lebih tinggi, dan julat pengesanannya lebih luas Walau bagaimanapun, LiDAR lebih terdedah kepada gangguan daripada hujan, salji, jerebu, dll. di udara, dan kosnya yang tinggi juga mengehadkan. sebab utamanya. Lidar yang dipasang pada kenderaan boleh dibahagikan kepada lidar satu talian, 4-baris, 8-baris, 16-baris dan 64-baris mengikut bilangan pancaran laser yang dipancarkan. Anda boleh menggunakan jadual berikut (Jadual 1) untuk membandingkan kebaikan dan keburukan penderia arus perdana.

Artikel yang menerangkan kesukaran teknikal utama pemanduan autonomi

Persepsi persekitaran pemanduan autonomi biasanya menggunakan dua kaedah: "persepsi lemah + kecerdasan super" dan "persepsi kuat + kecerdasan kuat "Laluan teknikal yang besar. Teknologi "persepsi lemah + kecerdasan super" terutamanya bergantung pada kamera dan teknologi pembelajaran mendalam untuk mencapai persepsi alam sekitar, dan bukannya bergantung pada lidar. Teknologi ini percaya bahawa manusia boleh memandu dengan sepasang mata, dan kereta juga boleh bergantung pada kamera untuk melihat persekitaran sekeliling dengan jelas. Jika kecerdasan super sukar dicapai buat sementara waktu, untuk mencapai pemanduan tanpa pemandu, adalah perlu untuk meningkatkan keupayaan persepsi Ini adalah laluan teknikal yang dipanggil "persepsi kuat + kecerdasan kuat".

Berbanding dengan laluan teknikal "persepsi lemah + kecerdasan super", ciri terbesar laluan teknikal "persepsi kuat + kecerdasan kuat" ialah penambahan sensor lidar, sekali gus meningkatkan keupayaan persepsi. Tesla menggunakan laluan teknikal "kecerdasan lemah + kecerdasan super", manakala Google Waymo, Baidu Apollo, Uber, Ford Motor dan syarikat kecerdasan buatan lain, syarikat pelancongan dan syarikat kereta tradisional semuanya menggunakan laluan teknikal "persepsi kuat + kecerdasan kuat".

02 Teknologi penentududukan ketepatan tinggi

Tujuan penentududukan adalah untuk mendapatkan kedudukan tepat kenderaan autonomi berbanding dengan persekitaran luaran, yang merupakan satu kemestian bagi kenderaan autonomi Asas penyediaan. Apabila memandu di jalan bandar yang kompleks, ketepatan kedudukan memerlukan ralat tidak lebih daripada 10 cm. Contohnya: Hanya dengan mengetahui jarak antara kenderaan dan persimpangan dengan tepat kita boleh membuat ramalan dan persediaan yang lebih tepat hanya dengan meletakkan kenderaan dengan tepat kita boleh menentukan lorong di mana kenderaan itu berada. Jika ralat kedudukan tinggi, ia boleh menyebabkan kemalangan jalan raya yang lengkap.

GPS ialah kaedah penentududukan yang paling banyak digunakan pada masa ini Semakin tinggi ketepatan GPS, semakin mahal penderia GPS. Walau bagaimanapun, ketepatan kedudukan semasa teknologi GPS komersil adalah jauh dari mencukupi Ketepatannya hanya tahap meter dan mudah diganggu oleh faktor seperti halangan terowong dan kelewatan isyarat. Untuk menyelesaikan masalah ini, Qualcomm telah membangunkan teknologi penentududukan ketepatan tinggi (VEPP) yang dipertingkatkan penglihatan, yang menyepadukan maklumat daripada berbilang komponen automotif seperti navigasi global GNSS, kamera, navigasi inersia IMU dan penderia penentukuran dan data bersama gabungan untuk mencapai kedudukan masa nyata global tepat ke garisan lorong. | maka berdasarkan Pemanduan perlu membuat keputusan tugas, dan kemudian dapat merancang berbilang laluan selamat antara dua titik melalui beberapa kekangan tertentu sambil mengelakkan halangan sedia ada, dan memilih laluan yang optimum antara laluan ini, sebagai trajektori pemanduan kenderaan perancangan. Mengikut tahap pembahagian yang berbeza, ia boleh dibahagikan kepada dua jenis: perancangan global dan perancangan tempatan Perancangan global adalah untuk merancang laluan optimum tanpa perlanggaran di bawah keadaan tertentu berdasarkan maklumat peta yang diperoleh. Sebagai contoh, terdapat banyak jalan dari Shanghai ke Beijing Merancang satu sebagai laluan memandu adalah perancangan keseluruhan.

Algoritma perancangan laluan statik seperti kaedah grid, kaedah visualisasi, kaedah topologi, kaedah ruang bebas, kaedah rangkaian saraf, dsb. Perancangan tempatan adalah berdasarkan perancangan global dan berdasarkan beberapa maklumat alam sekitar tempatan, ia adalah satu proses yang boleh mengelakkan perlanggaran dengan beberapa halangan yang tidak diketahui dan akhirnya mencapai titik sasaran. Sebagai contoh, akan ada kenderaan atau halangan lain pada laluan yang dirancang secara global dari Shanghai ke Beijing Jika anda ingin mengelakkan halangan atau kenderaan ini, anda perlu membelok dan melaraskan laluan ini. Kaedah perancangan laluan tempatan termasuk: kaedah medan potensi buatan, kaedah histogram domain vektor, kaedah medan daya maya, algoritma genetik dan algoritma perancangan laluan dinamik yang lain.

Lapisan membuat keputusan dan perancangan ialah sistem pemanduan autonomi Ia adalah gambaran langsung kecerdasan dan memainkan peranan penting dalam keselamatan pemanduan kenderaan dan keseluruhan kenderaan seni bina perancangan membuat keputusan termasuk: Lapisan-progresif, reaktif, dan campuran kedua-duanya.

Seni bina progresif hierarki ialah struktur sistem siri Dalam sistem ini, modul sistem pemanduan pintar berada dalam susunan yang jelas, dan output modul sebelumnya ialah The. input kepada modul seterusnya juga dipanggil struktur tindakan perancangan persepsi. Walau bagaimanapun, kebolehpercayaan struktur ini tidak tinggi Sebaik sahaja kegagalan perisian atau perkakasan berlaku dalam modul tertentu, keseluruhan aliran maklumat akan terjejas, dan keseluruhan sistem mungkin akan runtuh atau lumpuh.

Artikel yang menerangkan kesukaran teknikal utama pemanduan autonomi

Seni bina reaktif menggunakan struktur selari, dan lapisan kawalan boleh membuat keputusan secara langsung berdasarkan input penderia, jadi ia Tindakan yang dijana adalah hasil langsung daripada data deria, yang boleh menyerlahkan ciri-ciri tindakan yang dirasakan dan sesuai untuk persekitaran yang sama sekali tidak dikenali. Banyak tingkah laku dalam seni bina reaktif terutamanya melibatkan tugas khas yang mudah, jadi ia merasakan bahawa perancangan dan kawalan boleh disepadukan rapat, dan ruang storan yang diduduki tidak besar, jadi ia boleh menghasilkan tindak balas yang pantas dan prestasi masa nyata yang kukuh masa, setiap Satu lapisan hanya perlu bertanggungjawab untuk tingkah laku tertentu sistem Keseluruhan sistem dengan mudah dan fleksibel dapat merealisasikan peralihan dari tahap rendah ke tahap tinggi Selain itu, jika salah satu modul mengalami kegagalan yang tidak dijangka, lapisan yang tinggal masih boleh menghasilkan keputusan yang bermakna, keteguhan sistem telah dipertingkatkan dengan ketara. Kesukarannya adalah kerana fleksibiliti sistem untuk melakukan tindakan, mekanisme penyelarasan khusus diperlukan untuk menyelesaikan konflik antara pelbagai gelung kawalan dan bersetuju. penggerak untuk mendapatkan hasil yang bermakna.

Artikel yang menerangkan kesukaran teknikal utama pemanduan autonomi

Struktur sistem hierarki dan struktur sistem reaktif mempunyai kelebihan dan kekurangannya sendiri untuk memenuhi keperluan penggunaan persekitaran pemanduan yang kompleks dan boleh diubah sahaja, maka semakin ramai orang dalam industri mula mempelajari seni bina hibrid untuk menggabungkan kelebihan kedua-duanya secara berkesan dan menjana definisi berorientasikan matlamat pada tahap perancangan hierarki global tingkah laku menjana tingkah laku sistem reaktif yang berorientasikan pencarian sasaran pada peringkat perancangan tempatan.

Artikel yang menerangkan kesukaran teknikal utama pemanduan autonomi

04 Teknologi kawalan dan pelaksanaan

Teknologi teras kawalan untuk pemanduan autonomi Ia adalah kawalan membujur, kawalan sisi, kawalan membujur kenderaan dan kawalan pemanduan dan brek kenderaan. anda boleh mengawal kenderaan mengikut sasaran yang diberikan dan Mengekang operasi kenderaan kawalan automatik.

Artikel yang menerangkan kesukaran teknikal utama pemanduan autonomi

Kawalan membujur kenderaan adalah mengikut arah kelajuan pemanduan, iaitu kelajuan kenderaan dan hubungan antara kenderaan dan kenderaan atau halangan sebelum dan seterusnya Kawalan automatik jarak objek. Kawalan pelayaran dan kawalan brek kecemasan adalah contoh tipikal kawalan membujur dalam pemanduan autonomi. Masalah kawalan jenis ini berpunca kepada kawalan pemacu motor, enjin, sistem transmisi dan brek. Pelbagai model transmisi enjin motor, model pengendalian kenderaan dan model proses brek digabungkan dengan algoritma pengawal yang berbeza untuk membentuk pelbagai mod kawalan membujur.

Kawalan sisi kenderaan merujuk kepada kawalan berserenjang dengan arah pergerakan Matlamatnya adalah untuk mengawal kereta secara automatik mengekalkan laluan pemanduan yang diingini dan mencapai keselesaan dan kestabilan tunggangan yang baik di bawah kelajuan, muatan kenderaan yang berbeza. , rintangan angin, dan keadaan jalan. Terdapat dua kaedah reka bentuk asas untuk kawalan sisi kenderaan Satu adalah berdasarkan simulasi pemandu (satu ialah menggunakan model dinamik yang lebih mudah dan peraturan manipulasi pemandu untuk mereka bentuk pengawal; satu lagi ialah menggunakan proses manipulasi pemandu Pengawal latihan data memperolehi. algoritma kawalan); yang satu lagi ialah kaedah kawalan yang memberikan model mekanik gerakan sisi kereta (model gerakan sisi kereta yang tepat perlu diwujudkan. Model tipikal adalah seperti model trek tunggal, yang mengambil kira ciri-ciri kiri dan sebelah kanan kereta supaya sama)

05 Ringkasan

Selain persepsi persekitaran, kedudukan yang tepat, perancangan dan kawalan keputusan pelaksanaan yang diperkenalkan di atas, kenderaan autonomi juga melibatkan teknologi Utama peringkat tinggi seperti peta ketepatan, V2X dan ujian kenderaan autonomi. Teknologi pemanduan autonomi ialah gabungan kecerdasan buatan, cip berprestasi tinggi, teknologi komunikasi, teknologi penderia, teknologi kawalan kenderaan, teknologi data besar dan teknologi pelbagai bidang yang lain. Di samping itu, untuk pelaksanaan teknologi pemanduan autonomi, adalah perlu untuk mewujudkan kemudahan pengangkutan asas yang memenuhi keperluan pemanduan autonomi dan mempertimbangkan undang-undang dan peraturan mengenai pemanduan autonomi.

Atas ialah kandungan terperinci Artikel yang menerangkan kesukaran teknikal utama pemanduan autonomi. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan
Artikel ini dikembalikan pada:51CTO.COM. Jika ada pelanggaran, sila hubungi admin@php.cn Padam
SOA中的软件架构设计及软硬件解耦方法论SOA中的软件架构设计及软硬件解耦方法论Apr 08, 2023 pm 11:21 PM

​对于下一代集中式电子电器架构而言,采用central+zonal 中央计算单元与区域控制器布局已经成为各主机厂或者tier1玩家的必争选项,关于中央计算单元的架构方式,有三种方式:分离SOC、硬件隔离、软件虚拟化。集中式中央计算单元将整合自动驾驶,智能座舱和车辆控制三大域的核心业务功能,标准化的区域控制器主要有三个职责:电力分配、数据服务、区域网关。因此,中央计算单元将会集成一个高吞吐量的以太网交换机。随着整车集成化的程度越来越高,越来越多ECU的功能将会慢慢的被吸收到区域控制器当中。而平台化

新视角图像生成:讨论基于NeRF的泛化方法新视角图像生成:讨论基于NeRF的泛化方法Apr 09, 2023 pm 05:31 PM

新视角图像生成(NVS)是计算机视觉的一个应用领域,在1998年SuperBowl的比赛,CMU的RI曾展示过给定多摄像头立体视觉(MVS)的NVS,当时这个技术曾转让给美国一家体育电视台,但最终没有商业化;英国BBC广播公司为此做过研发投入,但是没有真正产品化。在基于图像渲染(IBR)领域,NVS应用有一个分支,即基于深度图像的渲染(DBIR)。另外,在2010年曾很火的3D TV,也是需要从单目视频中得到双目立体,但是由于技术的不成熟,最终没有流行起来。当时基于机器学习的方法已经开始研究,比

多无人机协同3D打印盖房子,研究登上Nature封面多无人机协同3D打印盖房子,研究登上Nature封面Apr 09, 2023 am 11:51 AM

我们经常可以看到蜜蜂、蚂蚁等各种动物忙碌地筑巢。经过自然选择,它们的工作效率高到叹为观止这些动物的分工合作能力已经「传给」了无人机,来自英国帝国理工学院的一项研究向我们展示了未来的方向,就像这样:无人机 3D 打灰:本周三,这一研究成果登上了《自然》封面。论文地址:https://www.nature.com/articles/s41586-022-04988-4为了展示无人机的能力,研究人员使用泡沫和一种特殊的轻质水泥材料,建造了高度从 0.18 米到 2.05 米不等的结构。与预想的原始蓝图

如何让自动驾驶汽车“认得路”如何让自动驾驶汽车“认得路”Apr 09, 2023 pm 01:41 PM

与人类行走一样,自动驾驶汽车想要完成出行过程也需要有独立思考,可以对交通环境进行判断、决策的能力。随着高级辅助驾驶系统技术的提升,驾驶员驾驶汽车的安全性不断提高,驾驶员参与驾驶决策的程度也逐渐降低,自动驾驶离我们越来越近。自动驾驶汽车又称为无人驾驶车,其本质就是高智能机器人,可以仅需要驾驶员辅助或完全不需要驾驶员操作即可完成出行行为的高智能机器人。自动驾驶主要通过感知层、决策层及执行层来实现,作为自动化载具,自动驾驶汽车可以通过加装的雷达(毫米波雷达、激光雷达)、车载摄像头、全球导航卫星系统(G

超逼真渲染!虚幻引擎技术大牛解读全局光照系统Lumen超逼真渲染!虚幻引擎技术大牛解读全局光照系统LumenApr 08, 2023 pm 10:21 PM

实时全局光照(Real-time GI)一直是计算机图形学的圣杯。多年来,业界也提出多种方法来解决这个问题。常用的方法包通过利用某些假设来约束问题域,比如静态几何,粗糙的场景表示或者追踪粗糙探针,以及在两者之间插值照明。在虚幻引擎中,全局光照和反射系统Lumen这一技术便是由Krzysztof Narkowicz和Daniel Wright一起创立的。目标是构建一个与前人不同的方案,能够实现统一照明,以及类似烘烤一样的照明质量。近期,在SIGGRAPH 2022上,Krzysztof Narko

一文聊聊智能驾驶系统与软件升级的关联设计方案一文聊聊智能驾驶系统与软件升级的关联设计方案Apr 11, 2023 pm 07:49 PM

由于智能汽车集中化趋势,导致在网络连接上已经由传统的低带宽Can网络升级转换到高带宽以太网网络为主的升级过程。为了提升车辆升级能力,基于为车主提供持续且优质的体验和服务,需要在现有系统基础(由原始只对车机上传统的 ECU 进行升级,转换到实现以太网增量升级的过程)之上开发一套可兼容现有 OTA 系统的全新 OTA 服务系统,实现对整车软件、固件、服务的 OTA 升级能力,从而最终提升用户的使用体验和服务体验。软件升级触及的两大领域-FOTA/SOTA整车软件升级是通过OTA技术,是对车载娱乐、导

internet的基本结构与技术起源于什么internet的基本结构与技术起源于什么Dec 15, 2020 pm 04:48 PM

internet的基本结构与技术起源于ARPANET。ARPANET是计算机网络技术发展中的一个里程碑,它的研究成果对促进网络技术的发展起到了重要的作用,并未internet的形成奠定了基础。arpanet(阿帕网)为美国国防部高级研究计划署开发的世界上第一个运营的封包交换网络,它是全球互联网的始祖。

综述:自动驾驶的协同感知技术综述:自动驾驶的协同感知技术Apr 08, 2023 pm 03:01 PM

arXiv综述论文“Collaborative Perception for Autonomous Driving: Current Status and Future Trend“,2022年8月23日,上海交大。感知是自主驾驶系统的关键模块之一,然而单车的有限能力造成感知性能提高的瓶颈。为了突破单个感知的限制,提出协同感知,使车辆能够共享信息,感知视线之外和视野以外的环境。本文回顾了很有前途的协同感知技术相关工作,包括基本概念、协同模式以及关键要素和应用。最后,讨论该研究领域的开放挑战和问题

See all articles

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

AI Hentai Generator

AI Hentai Generator

Menjana ai hentai secara percuma.

Alat panas

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat

Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Persekitaran pembangunan bersepadu PHP yang berkuasa

SublimeText3 versi Inggeris

SublimeText3 versi Inggeris

Disyorkan: Versi Win, menyokong gesaan kod!

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual