python字典的键
字典中的值没有任何限制, 可以是任意Python对象,即从标准对象到用户自定义对象皆可,但是字典中的键是有类型限制的。
不允许一个键对应多个值
必须明确一条原则:每个键只能对应一个项。也就是说:一键对应多个值是不允许的(像列表、元组和其他字典这样的容器对象是可以的)。 当有键发生冲突(即字典键重复赋值),取最后(最近)的赋值。Python并不会因字典中的键存在冲突而产生一个错误,它不会检查键的冲突是因为如果真这样做的话,在每个键-值对赋值的时候都会做检查,这将会占用一定量的内存。
>>> dict1 = {'foo':789, 'foo': 'xyz'} >>> dict1 {'foo': 'xyz'} >>> dict1['foo'] = 123 >>> dict1 {'foo': 123}
键必须是可哈希的
大多数Python对象可以作为键,但它们必须是可哈希的对象。像列表和字典这样的可变类型,由于它们不是可哈希的,所以不能作为键。 所有不可变的类型都是可哈希的,因此它们都可以做为字典的键。要说明的是:值相等的数字表示相同的键,即整型数字1和浮点数1.0的哈希值是相同的,它们是相同的键。
同时,也有一些可变对象(很少)是可哈希的,它们可以做字典的键,但很少见。举一个例子,一个实现了__hash__() 特殊方法的类。因为__hash__()方法返回一个整数,所以仍然是用不可变的值(做字典的键)。 为什么键必须是可哈希的?解释器调用哈希函数,根据字典中键的值来计算存储你的数据的位置。如果键是可变对象,它的值可改变。如果键发生变化,哈希函数会映射到不同的地址来存储数据。如果这样的情况发生,哈希函数就不可能可靠地存储或获取相关的数据。选择可哈希的键的原因就是因为它们的值不能改变。
数字和字符串可以被用做字典的键,元组是不可变的但也可能不是一成不变的,因此用元组做有效的键必须要加限制:若元组中只包括像数字和字符串这样的不可变参数,才可以作为字典中有效的键。
Atas ialah kandungan terperinci python字典的键可以是列表吗. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Tutorial ini menunjukkan cara menggunakan Python untuk memproses konsep statistik undang -undang ZIPF dan menunjukkan kecekapan membaca dan menyusun fail teks besar Python semasa memproses undang -undang. Anda mungkin tertanya -tanya apa maksud pengedaran ZIPF istilah. Untuk memahami istilah ini, kita perlu menentukan undang -undang Zipf. Jangan risau, saya akan cuba memudahkan arahan. Undang -undang Zipf Undang -undang Zipf hanya bermaksud: Dalam korpus bahasa semulajadi yang besar, kata -kata yang paling kerap berlaku muncul kira -kira dua kali lebih kerap sebagai kata -kata kerap kedua, tiga kali sebagai kata -kata kerap ketiga, empat kali sebagai kata -kata kerap keempat, dan sebagainya. Mari kita lihat contoh. Jika anda melihat corpus coklat dalam bahasa Inggeris Amerika, anda akan melihat bahawa perkataan yang paling kerap adalah "th

Artikel ini menerangkan cara menggunakan sup yang indah, perpustakaan python, untuk menghuraikan html. Ia memperincikan kaedah biasa seperti mencari (), find_all (), pilih (), dan get_text () untuk pengekstrakan data, pengendalian struktur dan kesilapan HTML yang pelbagai, dan alternatif (sel

Berurusan dengan imej yang bising adalah masalah biasa, terutamanya dengan telefon bimbit atau foto kamera resolusi rendah. Tutorial ini meneroka teknik penapisan imej di Python menggunakan OpenCV untuk menangani isu ini. Penapisan Imej: Alat yang berkuasa Penapis Imej

Python, kegemaran sains dan pemprosesan data, menawarkan ekosistem yang kaya untuk pengkomputeran berprestasi tinggi. Walau bagaimanapun, pengaturcaraan selari dalam Python memberikan cabaran yang unik. Tutorial ini meneroka cabaran -cabaran ini, memberi tumpuan kepada Interprete Global

Artikel ini membandingkan tensorflow dan pytorch untuk pembelajaran mendalam. Ia memperincikan langkah -langkah yang terlibat: penyediaan data, bangunan model, latihan, penilaian, dan penempatan. Perbezaan utama antara rangka kerja, terutamanya mengenai grap pengiraan

Tutorial ini menunjukkan mewujudkan struktur data saluran paip tersuai di Python 3, memanfaatkan kelas dan pengendali yang berlebihan untuk fungsi yang dipertingkatkan. Fleksibiliti saluran paip terletak pada keupayaannya untuk menggunakan siri fungsi ke set data, GE

Serialization dan deserialization objek Python adalah aspek utama dari mana-mana program bukan remeh. Jika anda menyimpan sesuatu ke fail python, anda melakukan siri objek dan deserialization jika anda membaca fail konfigurasi, atau jika anda menjawab permintaan HTTP. Dalam erti kata, siri dan deserialization adalah perkara yang paling membosankan di dunia. Siapa yang peduli dengan semua format dan protokol ini? Anda mahu berterusan atau mengalirkan beberapa objek python dan mengambilnya sepenuhnya pada masa yang akan datang. Ini adalah cara yang baik untuk melihat dunia pada tahap konseptual. Walau bagaimanapun, pada tahap praktikal, skim siri, format atau protokol yang anda pilih boleh menentukan kelajuan, keselamatan, kebebasan status penyelenggaraan, dan aspek lain dari program

Modul Statistik Python menyediakan keupayaan analisis statistik data yang kuat untuk membantu kami dengan cepat memahami ciri -ciri keseluruhan data, seperti biostatistik dan analisis perniagaan. Daripada melihat titik data satu demi satu, cuma melihat statistik seperti min atau varians untuk menemui trend dan ciri dalam data asal yang mungkin diabaikan, dan membandingkan dataset besar dengan lebih mudah dan berkesan. Tutorial ini akan menjelaskan cara mengira min dan mengukur tahap penyebaran dataset. Kecuali dinyatakan sebaliknya, semua fungsi dalam modul ini menyokong pengiraan fungsi min () dan bukan hanya menjumlahkan purata. Nombor titik terapung juga boleh digunakan. Import secara rawak Statistik import dari fracti


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

AI Hentai Generator
Menjana ai hentai secara percuma.

Artikel Panas

Alat panas

Dreamweaver Mac版
Alat pembangunan web visual

SublimeText3 Linux versi baharu
SublimeText3 Linux versi terkini

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

SublimeText3 versi Inggeris
Disyorkan: Versi Win, menyokong gesaan kod!

ZendStudio 13.5.1 Mac
Persekitaran pembangunan bersepadu PHP yang berkuasa
