


Kunci penterjemah global (GIL): Python Parallelism Hurdle
gil, mutex dalam cpython (pelaksanaan python yang paling biasa), memastikan keselamatan benang. Walaupun bermanfaat untuk mengintegrasikan dengan perpustakaan yang tidak selamat dan mempercepatkan kod tidak selari, GIL menghalang paralelisme yang benar melalui multithreading. Hanya satu benang asli yang dapat melaksanakan bytecodes python pada satu masa.Walau bagaimanapun, operasi di luar skop GIL (seperti tugas-tugas I/O) boleh berjalan selari. Ini membuka kemungkinan untuk pemprosesan selari, terutamanya apabila digabungkan dengan perpustakaan yang direka untuk tugas-tugas pengiraan.
Threads vs Processes: memilih pendekatan yang betul
Paralelisme boleh dicapai menggunakan benang atau proses. Threads ringan, berkongsi memori dalam proses, sementara proses lebih berat, masing -masing dengan ruang ingatannya sendiri.
-
Threads: Sesuai untuk tugas-tugas I/O yang terikat di mana kesesuaiannya mencukupi. GIL mengehadkan paralelisme yang benar, tetapi benang masih dapat meningkatkan prestasi dengan bertindih operasi I/O.
-
Proses: Sesuai untuk tugas-tugas terikat CPU yang memerlukan paralelisme yang benar. Proses berganda boleh menggunakan pelbagai teras CPU secara serentak, melangkaui batasan GIL.
selari vs serentak: memahami nuansa
Paralelisme membayangkan pelaksanaan tugas serentak, memanfaatkan beberapa teras. Konvensyen, sebaliknya, memberi tumpuan kepada menguruskan tugas untuk memaksimumkan kecekapan, walaupun tanpa pelaksanaan serentak yang benar. Konvensyen dapat meningkatkan prestasi dengan tugas penjadualan yang bijak, yang membolehkan operasi I/O terikat untuk meneruskan sementara tugas lain dilakukan.
Contoh praktikal: Membandingkan teknik
Kod berikut menunjukkan pendekatan bersiri, berulir, dan berasaskan proses kepada tugas pengiraan berat (), menonjolkan perbezaan prestasi: crunch_numbers
import time import threading import multiprocessing NUM_WORKERS = 4 def crunch_numbers(): # Simulate a CPU-bound task for _ in range(10000000): pass # Replace with actual computation start_time = time.time() for _ in range(NUM_WORKERS): crunch_numbers() end_time = time.time() print("Serial time=", end_time - start_time) start_time = time.time() threads = [threading.Thread(target=crunch_numbers) for _ in range(NUM_WORKERS)] [thread.start() for thread in threads] [thread.join() for thread in threads] end_time = time.time() print("Threads time=", end_time - start_time) start_time = time.time() processes = [multiprocessing.Process(target=crunch_numbers) for _ in range(NUM_WORKERS)] [process.start() for process in processes] [process.join() for process in processes] end_time = time.time() print("Parallel time=", end_time - start_time)Output akan menunjukkan peningkatan prestasi yang signifikan dengan pendekatan multiprocessing disebabkan oleh paralelisme yang benar. Pendekatan berulir mungkin menunjukkan sedikit peningkatan kerana gil.
Python menawarkan pelbagai perpustakaan untuk pengaturcaraan selari dan serentak:
-
_thread
: Antara muka peringkat rendah ke benang OS. -
multiprocessing
: Menyediakan API peringkat tinggi untuk pengurusan proses. -
concurrent.futures
: Menawarkan antara muka yang konsisten untuk kedua -dua benang dan proses. -
gevent
: Perpustakaan berasaskan Coroutine yang membolehkan kesesuaian yang cekap. -
Celery
: Giliran tugas yang diedarkan sesuai untuk senario yang kompleks dan berprestasi tinggi.
ingat: Proses menawarkan paralelisme yang benar tetapi lebih intensif sumber. Benang lebih ringan tetapi dibatasi oleh Gil di Python. Pilih pendekatan yang paling sesuai dengan sifat tugas anda (CPU-bound vs I/O-bound) dan keperluan prestasi. Konvensyen sering dapat memberikan keuntungan prestasi yang signifikan, walaupun tanpa paralelisme yang benar.
Atas ialah kandungan terperinci Pengenalan kepada pengaturcaraan selari dan serentak di Python. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Terdapat banyak kaedah untuk menyambungkan dua senarai dalam Python: 1. Pengendali menggunakan, yang mudah tetapi tidak cekap dalam senarai besar; 2. Gunakan kaedah Extend, yang cekap tetapi akan mengubah suai senarai asal; 3. Gunakan operator =, yang kedua -duanya cekap dan boleh dibaca; 4. Gunakan fungsi itertools.Chain, yang efisien memori tetapi memerlukan import tambahan; 5. Penggunaan senarai parsing, yang elegan tetapi mungkin terlalu kompleks. Kaedah pemilihan harus berdasarkan konteks dan keperluan kod.

Terdapat banyak cara untuk menggabungkan senarai Python: 1. Menggunakan pengendali, yang mudah tetapi tidak memori yang cekap untuk senarai besar; 2. Gunakan kaedah Extend, yang cekap tetapi akan mengubah suai senarai asal; 3. Gunakan itertools.chain, yang sesuai untuk set data yang besar; 4. Penggunaan * pengendali, bergabung dengan senarai kecil hingga sederhana dalam satu baris kod; 5. Gunakan numpy.concatenate, yang sesuai untuk set data dan senario yang besar dengan keperluan prestasi tinggi; 6. Gunakan kaedah tambahan, yang sesuai untuk senarai kecil tetapi tidak cekap. Apabila memilih kaedah, anda perlu mempertimbangkan saiz senarai dan senario aplikasi.

Compiledlanguagesofferspeedandsecurity, whilintpretedLanguagesprovideoeSeAfuseAndPortability.1) compiledLanguageslikec arefasterandsecureButhavelongerDevelopmentCyclesandplatformdependency.2) interpretedLanguagePyePyhonareeAseAreeAseaneAseaneSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSioSeaneaneAseaneaneAseaneaneAdoSioSiAdaSiAdoeSeaneAdoeSeaneAdoeSeanDoReAseanDOREPYHOREADOREB

Di Python, A untuk gelung digunakan untuk melintasi objek yang boleh dimakan, dan gelung sementara digunakan untuk melakukan operasi berulang kali apabila keadaan berpuas hati. 1) Untuk contoh gelung: melintasi senarai dan mencetak unsur -unsur. 2) Walaupun contoh gelung: Tebak permainan nombor sehingga anda rasa betul. Menguasai prinsip kitaran dan teknik pengoptimuman dapat meningkatkan kecekapan dan kebolehpercayaan kod.

Untuk menggabungkan senarai ke dalam rentetan, menggunakan kaedah Join () dalam Python adalah pilihan terbaik. 1) Gunakan kaedah Join () untuk menggabungkan elemen senarai ke dalam rentetan, seperti '' .join (my_list). 2) Untuk senarai yang mengandungi nombor, tukar peta (str, nombor) ke dalam rentetan sebelum menggabungkan. 3) Anda boleh menggunakan ekspresi penjana untuk pemformatan kompleks, seperti ','. Sertai (f '({Fruit})' forfruitinFruits). 4) Apabila memproses jenis data bercampur, gunakan peta (str, mixed_list) untuk memastikan semua elemen dapat ditukar menjadi rentetan. 5) Untuk senarai besar, gunakan '' .join (large_li

Pythonusesahybridapproach, combiningcompilationtobytecodeandinterpretation.1) codeiscompiledtopplatform-independentbytecode.2) byteCodeisinterpretedbythepythonvirtualmachine, enhancingficiencyAndortability.

TheKeydifferencesbetweenpython's "for" and "while" loopsare: 1) "untuk" loopsareidealforiteratingoversequencesorknowniterations, while2) "manakala" loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.un

Di Python, anda boleh menyambungkan senarai dan menguruskan elemen pendua melalui pelbagai kaedah: 1) Gunakan pengendali atau melanjutkan () untuk mengekalkan semua elemen pendua; 2) Tukar ke set dan kemudian kembali ke senarai untuk mengalih keluar semua elemen pendua, tetapi pesanan asal akan hilang; 3) Gunakan gelung atau senarai pemantauan untuk menggabungkan set untuk menghapuskan elemen pendua dan mengekalkan urutan asal.


Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Pelayar Peperiksaan Selamat
Pelayar Peperiksaan Selamat ialah persekitaran pelayar selamat untuk mengambil peperiksaan dalam talian dengan selamat. Perisian ini menukar mana-mana komputer menjadi stesen kerja yang selamat. Ia mengawal akses kepada mana-mana utiliti dan menghalang pelajar daripada menggunakan sumber yang tidak dibenarkan.

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

mPDF
mPDF ialah perpustakaan PHP yang boleh menjana fail PDF daripada HTML yang dikodkan UTF-8. Pengarang asal, Ian Back, menulis mPDF untuk mengeluarkan fail PDF "dengan cepat" dari tapak webnya dan mengendalikan bahasa yang berbeza. Ia lebih perlahan dan menghasilkan fail yang lebih besar apabila menggunakan fon Unicode daripada skrip asal seperti HTML2FPDF, tetapi menyokong gaya CSS dsb. dan mempunyai banyak peningkatan. Menyokong hampir semua bahasa, termasuk RTL (Arab dan Ibrani) dan CJK (Cina, Jepun dan Korea). Menyokong elemen peringkat blok bersarang (seperti P, DIV),

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

Versi Mac WebStorm
Alat pembangunan JavaScript yang berguna
