


Shanghai Jiao Tong University의 새로운 프레임워크는 CLIP 긴 텍스트 기능을 잠금 해제하고 다중 모드 생성의 세부 사항을 파악하며 이미지 검색 기능을 크게 향상시킵니다.
CLIP 긴 텍스트 기능이 잠금 해제되고 이미지 검색 작업 성능이 크게 향상되었습니다!
일부 주요 세부정보도 캡처할 수 있습니다. Shanghai Jiao Tong University와 Shanghai AI Laboratory는 새로운 프레임워크인 Long-CLIP을 제안했습니다.
Δ갈색 텍스트는 두 이미지를 구별하는 핵심 디테일입니다
Long-CLIP은 CLIP의 원래 기능 공간을 유지하는 데 기반을 두고 있으며 이미지 생성과 같은 다운스트림 작업에서 플러그 앤 플레이를 통해 미세한 결과를 얻을 수 있습니다. 긴 텍스트의 세분화된 이미지 생성 .
긴 텍스트 이미지 검색이 20% 증가하고, 짧은 텍스트 이미지 검색이 6% 증가했습니다.
CLIP 긴 텍스트 기능 잠금 해제
CLIP은 시각적 및 텍스트 양식을 정렬하고 강력한 제로샷 일반화 기능을 갖추고 있습니다. 따라서 CLIP은 이미지 분류, 텍스트 이미지 검색, 이미지 생성 등과 같은 다양한 다중 모드 작업에 널리 사용됩니다.
하지만 CLIP의 가장 큰 단점은 긴 텍스트 기능이 부족하다는 것입니다.
우선 절대 위치 인코딩을 사용하기 때문에 CLIP의 텍스트 입력 길이는 토큰 677개로 제한됩니다. 뿐만 아니라, CLIP의 실제 유효 길이는 토큰 20개 미만이라는 사실이 실험을 통해 입증되었습니다. 이는 세밀한 정보를 표현하기에는 턱없이 부족합니다. 그러나 이러한 한계를 극복하기 위해 연구자들은 해결책을 제안했다. 텍스트 입력에 특정 태그를 도입함으로써 모델은 중요한 부분에 집중할 수 있습니다. 입력에서 이러한 토큰의 위치와 수는 사전에 결정되며 20개 토큰을 초과하지 않습니다. 이러한 방식으로 CLIP은 텍스트 입력을 처리할 수 있습니다. 텍스트 측면에 긴 텍스트가 없으면 시각적 측면의 기능도 제한됩니다. 짧은 텍스트만 포함되어 있기 때문에 CLIP의 시각적 인코더는 이미지의 가장 중요한 구성 요소만 추출하고 다양한 세부 사항은 무시합니다. 이는
교차 모달 검색과 같은 세분화된 작업에 매우 해롭습니다. 동시에 긴 텍스트가 부족하여 CLIP은 인과 추론과 같은 복잡한 기능이 없는 BOF(Bag of Feature)와 유사한 간단한 모델링 방법을 채택합니다.
이 문제를 해결하기 위해 연구자들은 Long-CLIP 모델을 제안했습니다.
두 가지 주요 전략을 구체적으로 제안했습니다. 위치 임베딩의 지식 보존 확장과 핵심 구성 요소 정렬(기본 구성 요소 일치)을 추가하는 미세 조정 전략입니다.
지식 보존 위치 인코딩 확장
입력 길이를 확장하고 긴 텍스트의 기능을 향상시키는 간단한 방법은 먼저 위치 인코딩을 고정 비율 λ
1으로 보간한 다음 긴 텍스트를 통해 미세 조정하는 것입니다. 텍스트. 연구원들은 CLIP의 다양한 위치 인코딩의 훈련 정도가 다르다는 것을 발견했습니다. 학습 텍스트는 주로 짧은 텍스트일 가능성이 높으므로 낮은 위치 코딩은 더 완전히 학습되어 절대 위치를 정확하게 나타낼 수 있는 반면, 높은 위치 코딩은 대략적인 상대 위치만 나타낼 수 있습니다. 따라서 서로 다른 위치에서 코드를 보간하는 비용이 다릅니다.
위의 관찰을 바탕으로 연구원은 처음 20개의 위치 코드를 유지하고 나머지 57개의 위치 코드에 대해 더 큰 비율 λ
2로 보간되었습니다. 계산 공식은 다음과 같이 표현될 수 있습니다.
실험은 다음과 같습니다. 직접 보간에 비해 이 전략은 더 긴 전체 길이를 지원하면서 다양한 작업의 성능을 크게 향상시킬 수 있습니다.
핵심 속성 정렬 미세 조정 추가
긴 텍스트 미세 조정만 도입하면 모델이 또 다른 오해, 즉 모든 세부 사항을 동일하게 포함하게 됩니다. 이 문제를 해결하기 위해 연구자들은 미세 조정 시 핵심 속성 정렬 전략을 도입했습니다.
구체적으로, 연구자들은 주성분 분석(PCA) 알고리즘을 사용하여 세밀한 이미지 특징에서 핵심 속성을 추출하고, 나머지 속성을 필터링하여 거친 이미지 특징을 재구성한 후 요약된 짧은 텍스트와 비교했습니다. 이 전략에서는 모델이 더 많은 세부 정보(세밀한 정렬)를 포함할 뿐만 아니라 가장 핵심 속성(핵심 구성 요소 추출 및 대략적인 정렬)을 식별하고 모델링해야 합니다.
Δ핵심 속성 정렬의 미세 조정 프로세스 추가
다양한 멀티모달 작업에서 플러그 앤 플레이
이미지 및 텍스트 검색, 이미지 생성 및 기타 분야에서 Long-CLIP은 플러그 앤 플레이가 가능합니다. CLIP을 대체하기 위해 플레이하세요.
예를 들어, 이미지 및 텍스트 검색에서 Long-CLIP은 이미지 및 텍스트 모드에서 보다 세밀한 정보를 캡처할 수 있으므로 유사한 이미지와 텍스트를 구별하는 능력이 향상되고 이미지 및 텍스트 검색 성능이 크게 향상됩니다.
기존의 짧은 텍스트 검색(COCO, Flickr30k)이든 긴 텍스트 검색 작업이든 Long-CLIP은 회상률을 크게 향상시켰습니다.
△짧은 텍스트-이미지 검색 실험 결과
△긴 텍스트-이미지 검색 실험 결과
△긴 텍스트-이미지 검색 시각화, 갈색 텍스트는 둘을 구별하는 주요 세부 사항입니다. Pictures
또한 CLIP의 텍스트 인코더는 stable 확산 계열 등 텍스트-이미지 생성 모델에 자주 사용됩니다. 그러나 긴 텍스트 기능이 부족하기 때문에 이미지를 생성하는 데 사용되는 텍스트 설명은 일반적으로 매우 짧으며 다양한 세부 사항으로 사용자 정의할 수 없습니다.
Long-CLIP은 77개의 토큰 제한을 돌파하고 챕터 수준의 이미지 생성을 달성할 수 있습니다(오른쪽 아래).
세밀한 이미지 생성을 위해 77개의 토큰 내에서 더 많은 세부 사항을 모델링할 수도 있습니다(오른쪽 위).
문서 링크:https://arxiv.org/abs/2403.15378
코드 링크:https://github.com/beichenzbc/Long-CLIP
위 내용은 Shanghai Jiao Tong University의 새로운 프레임워크는 CLIP 긴 텍스트 기능을 잠금 해제하고 다중 모드 생성의 세부 사항을 파악하며 이미지 검색 기능을 크게 향상시킵니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

ON-DEVICE AI의 힘을 활용 : 개인 챗봇 CLI 구축 최근에 개인 AI 조수의 개념은 공상 과학처럼 보였다. 기술 애호가 인 Alex, 똑똑하고 현지 AI 동반자를 꿈꾸는 것을 상상해보십시오.

AI4MH의 첫 출시는 2025 년 4 월 15 일에 열렸으며, 유명한 정신과 의사이자 신경 과학자 인 Luminary Dr. Tom Insel 박사는 킥오프 스피커 역할을했습니다. Insel 박사는 정신 건강 연구 및 테크노에서 뛰어난 작업으로 유명합니다.

Engelbert는 "WNBA가 모든 사람, 플레이어, 팬 및 기업 파트너가 안전하고 가치가 있으며 권한을 부여받는 공간으로 남아 있기를 원합니다. 아노

소개 Python은 특히 데이터 과학 및 생성 AI에서 프로그래밍 언어로 탁월합니다. 대규모 데이터 세트를 처리 할 때 효율적인 데이터 조작 (저장, 관리 및 액세스)이 중요합니다. 우리는 이전에 숫자와 st를 다루었습니다

다이빙하기 전에 중요한 경고 : AI 성능은 비 결정적이며 고도로 사용하는 것이 중요합니다. 간단히 말하면 마일리지는 다를 수 있습니다. 이 기사 (또는 다른) 기사를 최종 단어로 취하지 마십시오. 대신 에이 모델을 자신의 시나리오에서 테스트하십시오.

뛰어난 AI/ML 포트폴리오 구축 : 초보자 및 전문가를위한 안내서 인공 지능 (AI) 및 머신 러닝 (ML)의 역할을 확보하는 데 강력한 포트폴리오를 만드는 것이 중요합니다. 이 안내서는 포트폴리오 구축에 대한 조언을 제공합니다

결과? 소진, 비 효율성 및 탐지와 동작 사이의 넓은 차이. 이 중 어느 것도 사이버 보안에서 일하는 사람에게는 충격이되지 않습니다. 그러나 에이전트 AI의 약속은 잠재적 인 전환점으로 부상했다. 이 새로운 수업

장기 파트너십 대 즉각적인 영향? 2 주 전 Openai는 2025 년 5 월 말까지 미국과 캐나다 대학생들에게 Chatgpt Plus에 무료로 이용할 수있는 강력한 단기 제안으로 발전했습니다.


핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

AI Hentai Generator
AI Hentai를 무료로 생성하십시오.

인기 기사

뜨거운 도구

WebStorm Mac 버전
유용한 JavaScript 개발 도구

Atom Editor Mac 버전 다운로드
가장 인기 있는 오픈 소스 편집기

DVWA
DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 영어 버전
권장 사항: Win 버전, 코드 프롬프트 지원!

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)
