찾다
기술 주변기기일체 포함지능형 추천 시스템의 데이터 편향 문제

지능형 추천 시스템의 데이터 편향 문제

Oct 10, 2023 am 09:00 AM
질문지능형 추천 시스템데이터 편향

지능형 추천 시스템의 데이터 편향 문제

지능형 추천 시스템의 데이터 편차 문제에는 구체적인 코드 예제가 필요합니다.

지능형 기술의 급속한 발전과 함께 지능형 추천 시스템은 우리 일상 생활에서 점점 더 중요한 역할을 하고 있습니다. 전자상거래 플랫폼에서 쇼핑을 하든 음악, 영화 등 엔터테인먼트 분야에서 추천을 찾을 때 우리 모두는 지능형 추천 시스템의 직접적인 영향을 느낄 수 있습니다. 그러나 데이터의 양이 증가함에 따라 지능형 추천 시스템의 데이터 편향 문제가 점차 명백해집니다.

데이터 편향 문제는 표본 데이터의 고르지 못한 분포나 개인화된 선호도의 존재로 인해 추천 결과가 부정확해지는 것을 말합니다. 특히, 일부 샘플의 수가 다른 샘플의 수를 훨씬 초과하여 시스템에서 추천을 할 때 "핫 추천" 또는 "롱테일 문제"가 발생하게 됩니다. 즉, 인기 있는 제품만 추천되거나 특정 유형의 제품이 추천됩니다.

데이터 편향 문제를 해결하는 방법에는 여러 가지가 있습니다. 아래에서는 행렬 분해를 기반으로 한 방법을 소개하겠습니다. 이 방법은 사용자 행동 데이터를 사용자 아이템 평가 매트릭스로 변환한 후, 매트릭스를 분해하여 사용자와 아이템의 숨겨진 특징을 획득하고 최종적으로 추천하는 방식입니다.

먼저, 아이템에 대한 사용자 평가나 클릭 행동 등 사용자 행동 데이터를 수집해야 합니다. 각 행은 사용자를 나타내고, 각 열은 항목을 나타내며, 행렬의 요소는 항목에 대한 사용자 평가를 나타내는 사용자 평가 행렬 R이 있다고 가정합니다.

다음으로 행렬 분해 알고리즘을 사용하여 사용자와 항목의 숨겨진 기능을 생성할 수 있습니다. 구체적으로, 우리는 등급 행렬 R을 분해하기 위해 특이값 분해(SVD)나 경사하강법과 같은 방법을 사용할 수 있습니다. 사용자의 숨겨진 특징 행렬을 U, 아이템의 숨겨진 특징 행렬을 V라고 가정하면, 아이템 i에 대한 사용자 u의 평점은 내적, 즉 Ru = U[u] * V[i를 통해 계산될 수 있습니다. ].

다음으로, 평가 행렬 R과 사용자 및 항목 숨겨진 특징 행렬 사이의 재구성 오류를 최소화하여 모델을 훈련할 수 있습니다. 특히, 평균 제곱 오차(MSE)를 손실 함수로 사용하여 경사하강법 및 기타 방법을 통해 모델 매개변수를 최적화할 수 있습니다.

마지막으로 학습된 사용자와 아이템의 숨겨진 기능을 활용하여 추천을 할 수 있습니다. 신규 사용자의 경우 사용자의 숨겨진 기능과 항목의 숨겨진 기능을 사용하여 각 항목에 대한 사용자의 예상 평점을 계산한 다음 사용자에게 평점이 가장 높은 항목을 추천할 수 있습니다.

다음은 행렬 분해를 사용하여 데이터 편향 문제를 해결하는 방법을 보여주는 간단한 Python 코드 예제입니다.

import numpy as np

# 构造用户评分矩阵
R = np.array([[5, 4, 0, 0], [0, 0, 3, 4], [0, 0, 0, 0], [0, 0, 0, 0]])

# 设置隐藏特征的维度
K = 2

# 使用奇异值分解对评分矩阵进行分解
U, s, Vt = np.linalg.svd(R)

# 只保留前K个奇异值和对应的特征向量
U = U[:, :K]
V = Vt.T[:, :K]

# 计算用户和物品的隐藏特征向量
U = U * np.sqrt(s[:K])
V = V * np.sqrt(s[:K])

# 构造新用户
new_user = np.array([3, 0, 0, 0])

# 计算新用户对每个物品的预测评分
predicted_scores = np.dot(U, V.T)

# 找出预测评分最高的几个物品
top_items = np.argsort(predicted_scores[new_user])[::-1][:3]

print("推荐给新用户的物品:", top_items)

요약하자면 지능형 추천 시스템의 데이터 편향 문제는 지능형 알고리즘이 해결해야 하는 중요한 문제입니다. 행렬 분해와 같은 방법을 통해 사용자 행동 데이터를 사용자와 아이템의 숨겨진 특징으로 변환하여 데이터 편향 문제를 해결할 수 있습니다. 그러나 이는 데이터 편향 문제를 해결하는 한 가지 방법일 뿐이며, 더 연구하고 탐색할 가치가 있는 다른 방법도 많이 있습니다.

위 내용은 지능형 추천 시스템의 데이터 편향 문제의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
Huggingface Smollm으로 개인 AI 조수를 만드는 방법Huggingface Smollm으로 개인 AI 조수를 만드는 방법Apr 18, 2025 am 11:52 AM

ON-DEVICE AI의 힘을 활용 : 개인 챗봇 CLI 구축 최근에 개인 AI 조수의 개념은 공상 과학처럼 보였다. 기술 애호가 인 Alex, 똑똑하고 현지 AI 동반자를 꿈꾸는 것을 상상해보십시오.

정신 건강을위한 AI는 스탠포드 대학교의 흥미로운 새로운 이니셔티브를 통해주의 깊게 분석됩니다.정신 건강을위한 AI는 스탠포드 대학교의 흥미로운 새로운 이니셔티브를 통해주의 깊게 분석됩니다.Apr 18, 2025 am 11:49 AM

AI4MH의 첫 출시는 2025 년 4 월 15 일에 열렸으며, 유명한 정신과 의사이자 신경 과학자 인 Luminary Dr. Tom Insel 박사는 킥오프 스피커 역할을했습니다. Insel 박사는 정신 건강 연구 및 테크노에서 뛰어난 작업으로 유명합니다.

2025 WNBA 드래프트 클래스는 리그가 성장하고 온라인 괴롭힘과 싸우고 있습니다.2025 WNBA 드래프트 클래스는 리그가 성장하고 온라인 괴롭힘과 싸우고 있습니다.Apr 18, 2025 am 11:44 AM

Engelbert는 "WNBA가 모든 사람, 플레이어, 팬 및 기업 파트너가 안전하고 가치가 있으며 권한을 부여받는 공간으로 남아 있기를 원합니다. 아노

파이썬 내장 데이터 구조에 대한 포괄적 인 가이드 - 분석 Vidhya파이썬 내장 데이터 구조에 대한 포괄적 인 가이드 - 분석 VidhyaApr 18, 2025 am 11:43 AM

소개 Python은 특히 데이터 과학 및 생성 AI에서 프로그래밍 언어로 탁월합니다. 대규모 데이터 세트를 처리 할 때 효율적인 데이터 조작 (저장, 관리 및 액세스)이 중요합니다. 우리는 이전에 숫자와 st를 다루었습니다

대안과 비교하여 OpenAi의 새로운 모델의 첫인상대안과 비교하여 OpenAi의 새로운 모델의 첫인상Apr 18, 2025 am 11:41 AM

다이빙하기 전에 중요한 경고 : AI 성능은 비 결정적이며 고도로 사용하는 것이 중요합니다. 간단히 말하면 마일리지는 다를 수 있습니다. 이 기사 (또는 다른) 기사를 최종 단어로 취하지 마십시오. 대신 에이 모델을 자신의 시나리오에서 테스트하십시오.

AI 포트폴리오 | AI 경력을위한 포트폴리오를 구축하는 방법은 무엇입니까?AI 포트폴리오 | AI 경력을위한 포트폴리오를 구축하는 방법은 무엇입니까?Apr 18, 2025 am 11:40 AM

뛰어난 AI/ML 포트폴리오 구축 : 초보자 및 전문가를위한 안내서 인공 지능 (AI) 및 머신 러닝 (ML)의 역할을 확보하는 데 강력한 포트폴리오를 만드는 것이 중요합니다. 이 안내서는 포트폴리오 구축에 대한 조언을 제공합니다

보안 운영에 대한 에이전트 AI가 무엇을 의미 할 수 있는지보안 운영에 대한 에이전트 AI가 무엇을 의미 할 수 있는지Apr 18, 2025 am 11:36 AM

결과? 소진, 비 효율성 및 탐지와 동작 사이의 넓은 차이. 이 중 어느 것도 사이버 보안에서 일하는 사람에게는 충격이되지 않습니다. 그러나 에이전트 AI의 약속은 잠재적 인 전환점으로 부상했다. 이 새로운 수업

Google 대 Openai : AI 학생들을위한 AI 싸움Google 대 Openai : AI 학생들을위한 AI 싸움Apr 18, 2025 am 11:31 AM

장기 파트너십 대 즉각적인 영향? 2 주 전 Openai는 2025 년 5 월 말까지 미국과 캐나다 대학생들에게 Chatgpt Plus에 무료로 이용할 수있는 강력한 단기 제안으로 발전했습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

DVWA

DVWA

DVWA(Damn Vulnerable Web App)는 매우 취약한 PHP/MySQL 웹 애플리케이션입니다. 주요 목표는 보안 전문가가 법적 환경에서 자신의 기술과 도구를 테스트하고, 웹 개발자가 웹 응용 프로그램 보안 프로세스를 더 잘 이해할 수 있도록 돕고, 교사/학생이 교실 환경 웹 응용 프로그램에서 가르치고 배울 수 있도록 돕는 것입니다. 보안. DVWA의 목표는 다양한 난이도의 간단하고 간단한 인터페이스를 통해 가장 일반적인 웹 취약점 중 일부를 연습하는 것입니다. 이 소프트웨어는

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

SublimeText3 영어 버전

SublimeText3 영어 버전

권장 사항: Win 버전, 코드 프롬프트 지원!

ZendStudio 13.5.1 맥

ZendStudio 13.5.1 맥

강력한 PHP 통합 개발 환경

PhpStorm 맥 버전

PhpStorm 맥 버전

최신(2018.2.1) 전문 PHP 통합 개발 도구