찾다
기술 주변기기일체 포함모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.

다중 작업 학습(MTL)에는 여러 작업 간의 변화도가 모순될 수 있기 때문에 많은 어려움이 있습니다. 작업 간의 상관관계를 활용하기 위해 저자는 여러 전문가로 구성된 모듈식 모델인 Mod-Squad 모델을 소개합니다. 모델은 작업과 전문가의 매칭을 유연하게 최적화하고 작업에 대한 일부 전문가를 선택할 수 있습니다. 이 모델은 각 전문가가 업무의 일부에만 대응하고, 각 업무는 전문가의 일부에만 대응함으로써 업무 간 긍정적인 연결의 활용을 극대화합니다. Mod-Squad는 MoE(Mixture of Experts) 레이어를 Vision Transformer 모델에 통합하고 전문가와 작업 간의 드물지만 강력한 종속성을 장려하는 새로운 손실 기능을 도입합니다. 또한 각 작업에 대해 모델은 전문가 네트워크의 작은 부분만 보유할 수 있으며 원래 대규모 모델과 동일한 성능을 달성할 수 있습니다. 이 모델은 Taskonomy 빅 데이터 세트와 13가지 비전 작업의 PASCALContext 데이터 세트에서 최상의 결과를 달성합니다.

모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.

논문 주소: https://arxiv.org/abs/2212.08066

프로젝트 주소: https://vis-www.cs.umass.edu/mod-squad/

Github 주소: https://github.com/UMass-Foundation-Model/Mod-Squad

다중 작업 학습(MTL)의 목적은 작업 간의 관계를 모델링하고 제공하는 것입니다. 여러 작업을 위한 통합 모델을 구축하세요. 그림 1에서 볼 수 있듯이 Mod-Squad의 주된 동기는 모든 작업이 아닌 일부 작업에 대해서만 전문가가 업데이트되도록 하고, 각 작업별로 일부 전문가만 업데이트되도록 하는 것입니다. 이를 통해 작업 간의 간섭을 피하면서 모델의 전체 용량을 활용할 수 있습니다.

모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.

그림 1. Mod-Squad: 전문가와 작업이 서로를 선택합니다. MoE ViT: 모든 전문가는 모든 작업에 사용됩니다.

다음은 기사에 대한 간략한 소개입니다.

모델 구조

모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.

그림 2. Mod-Squad: Vision Transformer에 전문가 믹스를 삽입합니다.

그림 2와 같이 Mod-Squad의 구조는 다음과 같습니다. ViT(Vision Transformer)에 전문가 혼합(MoE)을 도입합니다. MoE는 여러 전문가가 하이브리드 모델을 구성하는 기계 학습 모델입니다. 각 전문가는 독립적인 모델이며, 각 모델은 다양한 입력에 다르게 기여합니다. 마지막으로 모든 전문가의 기여에 가중치를 부여하고 결합하여 최종 결과물을 얻습니다. 이 접근 방식의 장점은 입력 이미지의 내용을 기반으로 최고의 전문가를 동적으로 선택하고 계산 노력을 제어할 수 있다는 것입니다.

이전 MoE 모델이 수렴된 후 그림에 따라 다양한 전문가를 사용할 수 있지만 특정 작업의 경우 모든 전문가를 사용하는 경향으로 모델이 수렴됩니다. Mod-Squad를 사용하면 모델이 이미지에 대해 서로 다른 전문가를 활용할 수 있으며, 융합 후에는 모델이 전문가 중 일부만 작업에 사용되는 상태에 도달할 수 있습니다. 다음으로 이것이 어떻게 달성되는지 소개하겠습니다.

전문가와 작업 간의 상호 정보 극대화

본 논문에서는 전문가 E와 작업 T 간의 할당을 최적화하기 위해 작업과 전문가의 공동 확률 모델을 제안합니다. 이 확률 모델은 전문가와 업무 간 상호 정보를 계산하는 데 사용되며, MoE에서 가중치 네트워크를 최적화하기 위한 추가 손실 함수 역할을 합니다. 상호 정보의 공식은 다음과 같습니다. E와 T의 확률은 MoE의 가중치 네트워크에서 얻을 수 있습니다.

모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.

모델은 작업과 전문가 간의 상호 정보를 최대화한 후 그림 3과 같이 전문가와 작업이 희박하고 매우 강한 종속성을 갖도록 허용할 수 있습니다. 가장 왼쪽에 있는 것은 Mod-Squad 작업 사용 전문가 빈도입니다. 보시다시피 Mod-Squad는 임무와 전문가 사이에 빈도가 적지만 더 날카로운 빈도를 가지고 있습니다.

모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.

그림 3. 다양한 전문가를 활용한 작업의 빈도 플롯 비교. 가로축은 다양한 전문가를 나타내고, 세로축은 다양한 업무를 나타내며, 색상이 어두울수록 사용 빈도가 높다는 것을 나타냅니다. Mod-Squad의 주파수 플롯은 더 희박하고 선명합니다.

이 작업과 전문가 사이의 의존성이 매우 적다는 장점은 다음과 같습니다.

1 유사한 작업은 동일한 전문가를 사용하는 경향이 있습니다.

2. 긍정적인 관련 작업 사용;

3. 모델의 용량은 모두 사용되지만 각 작업은 용량의 일부만 사용하며 작업에 따라 용량이 조정될 수 있습니다. 다중 작업 대형 모델에서 특정 작업에 사용 단일 작업 소형 모델을 추출하고 대형 모델과 동일한 성능을 갖습니다. 이 기능은 다중 작업 모델에서 작은 단일 작업 모델을 추출하는 데 사용할 수 있습니다.

모델은 작업 간 전문가 공유 빈도에 따라 아래 그림과 같이 작업 간 유사성도 계산할 수 있습니다. 3D 편향 작업은 동일한 전문가를 사용하는 경향이 있으므로 더 유사하다는 것을 알 수 있습니다.

실험부분

모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.

Mod-Squad는 정확도를 잃지 않고 단일 작업을 잘라낼 수 있습니다. 아래 그림의 세로축은 성능이고 가로축은 매개변수 양입니다.

대용량 데이터 세트 Taskonomy에서도 Mod-Squad가 순수 MTL보다 평균 2.8포인트 더 높고, 가지치기 후에도 동일한 성능을 유지하는 것을 볼 수 있습니다. 모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.

PASCAL-Context의 다른 방법과 비교할 때 Mod-Squad는 다른 MoE 방법보다 평균적으로 거의 2점 더 높습니다. 모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.

구체적인 내용은 원문을 참고해주세요. 모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.

위 내용은 모듈형 MoE는 시각적 다중 작업 학습의 기본 모델이 될 것입니다.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

성명
이 기사는 51CTO.COM에서 복제됩니다. 침해가 있는 경우 admin@php.cn으로 문의하시기 바랍니다. 삭제
Huggingface Smollm으로 개인 AI 조수를 만드는 방법Huggingface Smollm으로 개인 AI 조수를 만드는 방법Apr 18, 2025 am 11:52 AM

ON-DEVICE AI의 힘을 활용 : 개인 챗봇 CLI 구축 최근에 개인 AI 조수의 개념은 공상 과학처럼 보였다. 기술 애호가 인 Alex, 똑똑하고 현지 AI 동반자를 꿈꾸는 것을 상상해보십시오.

정신 건강을위한 AI는 스탠포드 대학교의 흥미로운 새로운 이니셔티브를 통해주의 깊게 분석됩니다.정신 건강을위한 AI는 스탠포드 대학교의 흥미로운 새로운 이니셔티브를 통해주의 깊게 분석됩니다.Apr 18, 2025 am 11:49 AM

AI4MH의 첫 출시는 2025 년 4 월 15 일에 열렸으며, 유명한 정신과 의사이자 신경 과학자 인 Luminary Dr. Tom Insel 박사는 킥오프 스피커 역할을했습니다. Insel 박사는 정신 건강 연구 및 테크노에서 뛰어난 작업으로 유명합니다.

2025 WNBA 드래프트 클래스는 리그가 성장하고 온라인 괴롭힘과 싸우고 있습니다.2025 WNBA 드래프트 클래스는 리그가 성장하고 온라인 괴롭힘과 싸우고 있습니다.Apr 18, 2025 am 11:44 AM

Engelbert는 "WNBA가 모든 사람, 플레이어, 팬 및 기업 파트너가 안전하고 가치가 있으며 권한을 부여받는 공간으로 남아 있기를 원합니다. 아노

파이썬 내장 데이터 구조에 대한 포괄적 인 가이드 - 분석 Vidhya파이썬 내장 데이터 구조에 대한 포괄적 인 가이드 - 분석 VidhyaApr 18, 2025 am 11:43 AM

소개 Python은 특히 데이터 과학 및 생성 AI에서 프로그래밍 언어로 탁월합니다. 대규모 데이터 세트를 처리 할 때 효율적인 데이터 조작 (저장, 관리 및 액세스)이 중요합니다. 우리는 이전에 숫자와 st를 다루었습니다

대안과 비교하여 OpenAi의 새로운 모델의 첫인상대안과 비교하여 OpenAi의 새로운 모델의 첫인상Apr 18, 2025 am 11:41 AM

다이빙하기 전에 중요한 경고 : AI 성능은 비 결정적이며 고도로 사용하는 것이 중요합니다. 간단히 말하면 마일리지는 다를 수 있습니다. 이 기사 (또는 다른) 기사를 최종 단어로 취하지 마십시오. 대신 에이 모델을 자신의 시나리오에서 테스트하십시오.

AI 포트폴리오 | AI 경력을위한 포트폴리오를 구축하는 방법은 무엇입니까?AI 포트폴리오 | AI 경력을위한 포트폴리오를 구축하는 방법은 무엇입니까?Apr 18, 2025 am 11:40 AM

뛰어난 AI/ML 포트폴리오 구축 : 초보자 및 전문가를위한 안내서 인공 지능 (AI) 및 머신 러닝 (ML)의 역할을 확보하는 데 강력한 포트폴리오를 만드는 것이 중요합니다. 이 안내서는 포트폴리오 구축에 대한 조언을 제공합니다

보안 운영에 대한 에이전트 AI가 무엇을 의미 할 수 있는지보안 운영에 대한 에이전트 AI가 무엇을 의미 할 수 있는지Apr 18, 2025 am 11:36 AM

결과? 소진, 비 효율성 및 탐지와 동작 사이의 넓은 차이. 이 중 어느 것도 사이버 보안에서 일하는 사람에게는 충격이되지 않습니다. 그러나 에이전트 AI의 약속은 잠재적 인 전환점으로 부상했다. 이 새로운 수업

Google 대 Openai : AI 학생들을위한 AI 싸움Google 대 Openai : AI 학생들을위한 AI 싸움Apr 18, 2025 am 11:31 AM

장기 파트너십 대 즉각적인 영향? 2 주 전 Openai는 2025 년 5 월 말까지 미국과 캐나다 대학생들에게 Chatgpt Plus에 무료로 이용할 수있는 강력한 단기 제안으로 발전했습니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

mPDF

mPDF

mPDF는 UTF-8로 인코딩된 HTML에서 PDF 파일을 생성할 수 있는 PHP 라이브러리입니다. 원저자인 Ian Back은 자신의 웹 사이트에서 "즉시" PDF 파일을 출력하고 다양한 언어를 처리하기 위해 mPDF를 작성했습니다. HTML2FPDF와 같은 원본 스크립트보다 유니코드 글꼴을 사용할 때 속도가 느리고 더 큰 파일을 생성하지만 CSS 스타일 등을 지원하고 많은 개선 사항이 있습니다. RTL(아랍어, 히브리어), CJK(중국어, 일본어, 한국어)를 포함한 거의 모든 언어를 지원합니다. 중첩된 블록 수준 요소(예: P, DIV)를 지원합니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경