찾다

Data modeling for RDBMS has been a well-defined discipline for many years. Techniques like logical to physical mapping and normalization / de-normalization have been widely practiced by professionals, including novice users. However, with

Data modeling for RDBMS has been a well-defined discipline for many years. Techniques like logical to physical mapping and normalization / de-normalization have been widely practiced by professionals, including novice users. However, with the recent emergence of NoSQL databases, data modeling is facing new challenges to its relevance. Generally speaking, NoSQL practitioners focus on physical data model design rather than the traditional conceptual / logical data model process for the following reasons:

  • Developer-centric mindset – With flexible schema (or schema-free) support in NoSQL databases, application developers typically assume data model design responsibility. They have been ingrained with the notion that the database schema is an integral part of application logic.
  • High-performance queries running in massive scale-out distributed environments – Contrary to traditional, centralized scale-up systems (including the RDBMS tier), modern applications run in distributed, scale-out environments. To accomplish scale-out, application developers are driven to tackle scalability and performance first through focused physical data model design, thus abandoning the traditional conceptual, logical, and physical data model design process.
  • Big and unstructured data – With its rigidly fixed schema and limited scale-out capability, the traditional RDBMS has long been criticized for its lack of support for big and unstructured data. By comparison, NoSQL databases were conceived from the beginning with the capability to store big and unstructured data using flexible schemas running in distributed scale-out environments.

In this blog post, we explore other important mindset changes in NoSQL data modeling: development agility through flexible schemas vs. database manageability; the business and data model design process; the role of RDBMS in NoSQL data modeling; NoSQL variations that affect data modeling; and visualization approaches for NoSQL logical and physical data modeling. We end the post with a peak into the NoSQL data modeling future.

Development agility vs. database manageability

One highly touted feature in today’s NoSQL is application development agility. Part of this agility is accomplished through flexible schemas, where developers have full control over how data is stored and organized in their NoSQL databases. Developers can create or modify database objects in application code on the fly without relying on DBA execution. The result is, indeed, increased application development and deployment agility.

However, the flexible schema is not without its challenges. For example, dynamically created database objects can cause unforeseen database management issues due to the lack of DBA oversight. Furthermore, unsupervised schema changes increase DBA challenges in diagnosing associated issues. Frequently, such troubleshooting requires the DBA to review application code written in programming languages (e.g., Java) rather than in RDBMS DDL (Data Definition Language) – a skill that most DBAs do not possess.

NoSQL business and data model design process

In old-school software engineering practice, sound business and (relational) data model designs are key to successful medium- to large-scale software projects. As NoSQL developers assume business / data model design ownership, another dilemma arises: data modeling tools. For example, traditional RDBMS logical and physical data models are governed and published by dedicated professionals using commercial tools, such as PowerDesigner or ER/Studio.

Given the nascent state of NoSQL technology, there isn’t a professional-quality data modeling tool for such tasks. It is not uncommon for stakeholders to review application source code in order to uncover data model information. This is a tall order for non-technical users such as business owners or product managers. Other approaches, like sampling actual data from production databases, can be equally laborious and tedious.

It is obvious that extensive investment in automation and tooling is required. To help alleviate this challenge, we recommend that NoSQL projects use the business and data model design process shown in the following diagram (illustrated with MongoDB’s document-centric model):

design_process

Figure 1

  • Business Requirements & Domain Model: At the high level, one can continue using database-agnostic methodologies, such as domain-driven design, to capture and define business requirements
  • Query Patterns & Application Object Model: After preliminary business requirements and the domain model are produced, one can work iteratively and in parallel to analyze top user access patterns and the application model, using UML class or object diagrams. With RDMS, applications can implement database access using either a declarative query (i.e., using a single SQL table join) or a navigational approach (i.e., walking individual tables embedded in application logic). The latter approach typically requires an object-relational mapping (ORM) layer to facilitate tedious plumbing work. By nature, almost all NoSQL databases belong to the latter category. MongoDB can support both approaches through the JSON Document model, SQL-subset query, and comprehensive secondary indexing capabilities.
  • JSON Document Model & MongoDB Collection / Document: This part is where native physical data modeling takes place. One has to understand the specific NoSQL product’s strengths and weaknesses in order to produce efficient schema designs and serve effective, high-performance queries. For example, modeling social network entities like followed and followers is very different from modeling online blogging applications. As such, social networking applications are best implemented using Graph NoSQL databases like Neo4j, while online blogging applications can be implemented using other flavors of NoSQL like MongoDB.

RDBMS data modeling influence on NoSQL

Interestingly enough, old-school RDBMS data modeling techniques still play a meaningful role for those who are new to NoSQL technology. Using document-centric MongoDB as an example, the following diagram illustrates how one can map a relational data model to a comparable MongoDB document-centric data model:

mongodb_mapping

Figure 2

NoSQL data model variation

In the relational world, logical data models are reasonably portable among different RDBMS products. In a physical data model, design specifications such as storage clauses or non-standard SQL extensions might vary from vendor to vendor. Various SQL standards, such as SQL-92 and the latest SQL:2008 as defined by industry bodies like ANSI/ISO, can help application portability across different database platforms.

However, in the NoSQL world, physical data models vary dramatically among different NoSQL databases; there is no industry standard comparable to SQL-92 for RDBMS. Therefore, it helps to understand key differences in the various NoSQL database models:

  • Key-value stores – Collections comprised of unique keys having 1-n valid values
  • Column families – Distributed data stores in which a column consists of a unique key, values for the key, and a timestamp differentiating current from stale values
  • Document databases – Systems that store and manage documents and their metadata (type, title, author, creation/modification/deletion date, etc.)
  • Graph databases – Systems that use graph theory to represent and store data as nodes (people, business, accounts, or other entities), node properties, and edges (lines connecting nodes/properties to each other)

The following diagram illustrates the comparison landscape based on model complexity and scalability:

nosql_comparisons

Figure 3

It is worth mentioning that for NoSQL data models, a natural evolutionary path exists from simple key-value stores to the highly complicated graph databases, as shown in the following diagram:

nosql_evolution

Figure 4

NoSQL data model visualization

For conceptual data models, diagramming techniques such as the Entity Relationship Diagram can continue to be used to model NoSQL applications. However, logical and physical NoSQL data modeling requires new thinking, due to each NoSQL product assuming a different native structure. One can intuitively use any of the following three visualization approaches, using a document-centric data model like MongoDB as an example:

  • Native visual representation of MongoDB collections with support for nested sub-documents (see Figure 2 above)

Pros – It naturally conveys a complex document model through an intuitive visual representation.
Cons – Without specialized tools support, visualization results in ad-hoc drawing using non-uniform conventions or notations.

  • Reverse engineering selected sample documents using JSON Designer (see Figure 5 below)

Pros – It can easily reverse engineer a hierarchical model into a visual representation from existing JSON documents stored in NoSQL databases like MongoDB.
Cons – As of this writing, JSON Designer is available only on iPhone / iPad. Furthermore, it does not include native DB objects, such as MongoDB indexes.

json_designer

Figure 5

  • Traditional RDBMS data modeling tools like PowerDesigner (see Figure 6 below)

Pros – Commercial tools support is available.
Cons – it requires tedious manual preparation and diagram arrangement to represent complex and deeply nested document structure.

power_designer

Figure 6

In a future post, we’ll cover specific data model visualization techniques for other NoSQL products such as Cassandra, which is based on the Column Family structure.

New NoSQL data modeling opportunities

Like any emerging technology, NoSQL will mature as it becomes mainstream. We envision the following new data modeling opportunities for NoSQL:

  • Reusable data model design patterns (some product-specific and some agnostic) to help reduce application development effort and cost
  • Unified NoSQL model repository to support different NoSQL products
  • Bi-directional, round-trip engineering support for (data) model-driven design processes and tools
  • Automated data model extraction from application source code
  • Automated code-model-data consistency validation and consistency conformance metrics
  • Strong control for application / data model change management, with proactive tracking and reconciliation between application code, embedded data models, and the actual data in the NoSQL databases
성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
MySQL : 초보자가 마스터하는 필수 기술MySQL : 초보자가 마스터하는 필수 기술Apr 18, 2025 am 12:24 AM

MySQL은 초보자가 데이터베이스 기술을 배우는 데 적합합니다. 1. MySQL 서버 및 클라이언트 도구를 설치하십시오. 2. SELECT와 같은 기본 SQL 쿼리를 이해하십시오. 3. 마스터 데이터 작업 : 데이터를 만들고, 삽입, 업데이트 및 삭제합니다. 4. 고급 기술 배우기 : 하위 쿼리 및 창 함수. 5. 디버깅 및 최적화 : 구문 확인, 인덱스 사용, 선택*을 피하고 제한을 사용하십시오.

MySQL : 구조화 된 데이터 및 관계형 데이터베이스MySQL : 구조화 된 데이터 및 관계형 데이터베이스Apr 18, 2025 am 12:22 AM

MySQL은 테이블 구조 및 SQL 쿼리를 통해 구조화 된 데이터를 효율적으로 관리하고 외래 키를 통해 테이블 ​​간 관계를 구현합니다. 1. 테이블을 만들 때 데이터 형식을 정의하고 입력하십시오. 2. 외래 키를 사용하여 테이블 간의 관계를 설정하십시오. 3. 인덱싱 및 쿼리 최적화를 통해 성능을 향상시킵니다. 4. 데이터 보안 및 성능 최적화를 보장하기 위해 데이터베이스를 정기적으로 백업 및 모니터링합니다.

MySQL : 주요 기능 및 기능이 설명되었습니다MySQL : 주요 기능 및 기능이 설명되었습니다Apr 18, 2025 am 12:17 AM

MySQL은 웹 개발에 널리 사용되는 오픈 소스 관계형 데이터베이스 관리 시스템입니다. 주요 기능에는 다음이 포함됩니다. 1. 다른 시나리오에 적합한 InnoDB 및 MyISAM과 같은 여러 스토리지 엔진을 지원합니다. 2.로드 밸런싱 및 데이터 백업을 용이하게하기 위해 마스터 슬레이브 복제 기능을 제공합니다. 3. 쿼리 최적화 및 색인 사용을 통해 쿼리 효율성을 향상시킵니다.

SQL의 목적 : MySQL 데이터베이스와 상호 작용합니다SQL의 목적 : MySQL 데이터베이스와 상호 작용합니다Apr 18, 2025 am 12:12 AM

SQL은 MySQL 데이터베이스와 상호 작용하여 데이터 첨가, 삭제, 수정, 검사 및 데이터베이스 설계를 실현하는 데 사용됩니다. 1) SQL은 Select, Insert, Update, Delete 문을 통해 데이터 작업을 수행합니다. 2) 데이터베이스 설계 및 관리에 대한 생성, 변경, 삭제 문을 사용하십시오. 3) 복잡한 쿼리 및 데이터 분석은 SQL을 통해 구현되어 비즈니스 의사 결정 효율성을 향상시킵니다.

초보자를위한 MySQL : 데이터베이스 관리를 시작합니다초보자를위한 MySQL : 데이터베이스 관리를 시작합니다Apr 18, 2025 am 12:10 AM

MySQL의 기본 작업에는 데이터베이스, 테이블 작성 및 SQL을 사용하여 데이터에서 CRUD 작업을 수행하는 것이 포함됩니다. 1. 데이터베이스 생성 : createAbasemy_first_db; 2. 테이블 만들기 : CreateTableBooks (idintauto_incrementprimarykey, titlevarchar (100) notnull, authorvarchar (100) notnull, published_yearint); 3. 데이터 삽입 : InsertIntobooks (Title, Author, Published_year) VA

MySQL의 역할 : 웹 응용 프로그램의 데이터베이스MySQL의 역할 : 웹 응용 프로그램의 데이터베이스Apr 17, 2025 am 12:23 AM

웹 응용 프로그램에서 MySQL의 주요 역할은 데이터를 저장하고 관리하는 것입니다. 1. MySQL은 사용자 정보, 제품 카탈로그, 트랜잭션 레코드 및 기타 데이터를 효율적으로 처리합니다. 2. SQL 쿼리를 통해 개발자는 데이터베이스에서 정보를 추출하여 동적 컨텐츠를 생성 할 수 있습니다. 3.mysql은 클라이언트-서버 모델을 기반으로 작동하여 허용 가능한 쿼리 속도를 보장합니다.

MySQL : 첫 번째 데이터베이스 구축MySQL : 첫 번째 데이터베이스 구축Apr 17, 2025 am 12:22 AM

MySQL 데이터베이스를 구축하는 단계에는 다음이 포함됩니다. 1. 데이터베이스 및 테이블 작성, 2. 데이터 삽입 및 3. 쿼리를 수행하십시오. 먼저 CreateAbase 및 CreateTable 문을 사용하여 데이터베이스 및 테이블을 작성한 다음 InsertInto 문을 사용하여 데이터를 삽입 한 다음 최종적으로 SELECT 문을 사용하여 데이터를 쿼리하십시오.

MySQL : 데이터 저장에 대한 초보자 친화적 인 접근 방식MySQL : 데이터 저장에 대한 초보자 친화적 인 접근 방식Apr 17, 2025 am 12:21 AM

MySQL은 사용하기 쉽고 강력하기 때문에 초보자에게 적합합니다. 1.MySQL은 관계형 데이터베이스이며 CRUD 작업에 SQL을 사용합니다. 2. 설치가 간단하고 루트 사용자 비밀번호를 구성해야합니다. 3. 삽입, 업데이트, 삭제 및 선택하여 데이터 작업을 수행하십시오. 4. Orderby, Where and Join은 복잡한 쿼리에 사용될 수 있습니다. 5. 디버깅은 구문을 확인하고 쿼리를 분석하기 위해 설명을 사용해야합니다. 6. 최적화 제안에는 인덱스 사용, 올바른 데이터 유형 선택 및 우수한 프로그래밍 습관이 포함됩니다.

See all articles

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

AI Hentai Generator

AI Hentai Generator

AI Hentai를 무료로 생성하십시오.

뜨거운 도구

SecList

SecList

SecLists는 최고의 보안 테스터의 동반자입니다. 보안 평가 시 자주 사용되는 다양한 유형의 목록을 한 곳에 모아 놓은 것입니다. SecLists는 보안 테스터에게 필요할 수 있는 모든 목록을 편리하게 제공하여 보안 테스트를 더욱 효율적이고 생산적으로 만드는 데 도움이 됩니다. 목록 유형에는 사용자 이름, 비밀번호, URL, 퍼징 페이로드, 민감한 데이터 패턴, 웹 셸 등이 포함됩니다. 테스터는 이 저장소를 새로운 테스트 시스템으로 간단히 가져올 수 있으며 필요한 모든 유형의 목록에 액세스할 수 있습니다.

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

Atom Editor Mac 버전 다운로드

Atom Editor Mac 버전 다운로드

가장 인기 있는 오픈 소스 편집기

MinGW - Windows용 미니멀리스트 GNU

MinGW - Windows용 미니멀리스트 GNU

이 프로젝트는 osdn.net/projects/mingw로 마이그레이션되는 중입니다. 계속해서 그곳에서 우리를 팔로우할 수 있습니다. MinGW: GCC(GNU Compiler Collection)의 기본 Windows 포트로, 기본 Windows 애플리케이션을 구축하기 위한 무료 배포 가능 가져오기 라이브러리 및 헤더 파일로 C99 기능을 지원하는 MSVC 런타임에 대한 확장이 포함되어 있습니다. 모든 MinGW 소프트웨어는 64비트 Windows 플랫폼에서 실행될 수 있습니다.