検索
ホームページテクノロジー周辺機器AIAndrew Ng: マルチエージェントのコラボレーションが新たな鍵となり、ソフトウェア開発などのタスクがより効率化されるでしょう

つい最近、スタンフォード大学教授のアンドリュー・ン氏が講演の中でインテリジェント・エージェントの大きな可能性について言及し、これも多くの議論を引き起こしました。その中で、Ng Enda 氏は、GPT-3.5 に基づいて構築されたエージェント ワークフローは、アプリケーションで GPT-4 よりも優れたパフォーマンスを発揮すると述べました。これは、対象を大規模なモデルに限定することが必ずしも賢明ではなく、エージェントが使用する基本モデルよりも優れている可能性があることを示しています。

ソフトウェア開発の分野では、これらのエージェントは、効率的に連携し、プログラミングにおける複雑な問題を処理し、さらには自動コード生成を実行する独自の能力を実証してきました。最新の技術トレンドは、AI スマート コミュニケーションがソフトウェア開発において大きな可能性を示していることを示しています。デビンを覚えていますか?世界初のAIソフトウェアエンジニアとして知られるが、1人のエージェントがこれほどの体験をもたらすことができ、複数のエージェントが連携すれば経験値を直接的に最大化できるのだろうかと驚かされた。

複数のエージェントからなるチームを想像してください。各メンバーはコード レビュー、エラー検出、新機能の実装などの特定のタスクを専門としています。これらのインテリジェントなエンティティは、互いの機能を補完し、ソフトウェア プロジェクトの進行を共同で促進できます。これでプログラマーの手が解放され、腱鞘炎を心配する必要もなくなるのではないでしょうか?

Wu Enda は、この分野を深く掘り下げ、インテリジェント システムの最新の開発を調査する記事を書きました。このような背景から、記事内で言及されている AutoGen や LangGraph などのツールが登場しました。これらのツールは、開発者が AI エージェントをより簡単に展開および管理し、その可能性を最大限に発揮できるように設計されています。その能力を利用すれば、プログラミングの専門知識がない人でも AI エージェントを活用してソフトウェア開発プロセスを最適化および自動化できます。以下は、「Heart of the Machine」を原文の意味を変えずに編集・翻訳したものです。

Andrew Ng: マルチエージェントのコラボレーションが新たな鍵となり、ソフトウェア開発などのタスクがより効率化されるでしょう

#元のリンク: https://www.deeplearning.ai/the-batch/issue-245/

エージェントのコラボレーションは、最近の手紙で説明した 4 つの主要な AI エージェント設計パターンの最後のものです。ソフトウェアの作成などの複雑なタスクの場合、マルチエージェント アプローチでは、タスクをさまざまな役割 (ソフトウェア エンジニア、プロダクト マネージャー、デザイナー、QA エンジニアなど) が実行するサブタスクに分割し、異なるエージェントが異なるタスクを完了できるようにします。

LLM (または複数の LLM) を提供して、さまざまなタスクを実行するさまざまなエージェントを構築できます。たとえば、ソフトウェア エンジニア エージェントを構築するには、LLM を提供します。「あなたは明確で効率的なコードを書くのが専門です。タスクを実行するコードを書いてください...」。

同じ大規模言語モデル (LLM) を複数回呼び出しますが、マルチエージェント プログラミングの抽象化アプローチを採用しています。これは直感に反するように思えるかもしれませんが、これをサポートする理由はいくつかあります。 ###############それは動作します!多くのチームがこのアプローチを使用して効果を上げており、その結果ほど説得力のあるものはありません。さらに、アブレーション研究 (AutoGen の論文など) では、複数の薬剤が単一の薬剤よりも優れたパフォーマンスを発揮することが示されています。

現在の LLM の中には非常に長い入力コンテキストを受け入れることができるものもありますが (たとえば、Gemini 1.5 Pro は 100 万個のトークンを受け入れることができます)、長くて複雑な入力を真に理解する能力は異なります。エージェントのワークフローを採​​用し、LLM が一度に 1 つのことに集中してパフォーマンスを向上できるようにします。
  1. 最も重要なのは、マルチエージェント設計パターンは、複雑なタスクをサブタスクに分解するためのフレームワークを開発者に提供することです。単一の CPU でコードを実行する場合、プログラムをさまざまなプロセスまたはスレッドに分割することがよくあります。この抽象化は、タスクをコーディングしやすいサブタスクに分割するのに役立ちます。マルチエージェントの役割の観点から考えることも、有用な抽象化です。
  2. 多くの企業では、マネージャーがどの役割に雇用するかを決定し、その後、大規模なソフトウェアの作成などの複雑なプロジェクトをどのように統合するかを決定することがよくあります。または調査レポートの作成 – タスクを小さなタスクに分割し、異なる専門知識を持つ従業員に割り当てます。複数のエージェントを使用しても同様に機能します。各エージェントは独自のワークフローを実装し、独自のメモリ (これ自体がエージェント テクノロジの急速に成長している分野です。エージェントが将来のタスクをより適切に実行するために十分な過去の対話を記憶する方法) を持ち、場合によっては他のエージェントに支援を要求します。エージェントはツールを計画して使用することもできます。これにより、多数の LLM 呼び出しとエージェント間の情報転送が発生し、非常に複雑なワークフローが形成される可能性があります。

人材の管理は難しいですが、これは私たちにとって非常に馴染みのあることであり、AI エージェントを「雇用」し、タスクを割り当てる方法に関する精神的な枠組みを提供します。幸いなことに、AI エージェントの誤った管理による損害は、人間の誤った管理よりもはるかに小さいです。

AutoGen、Crew AI、LangGraph などの新しいフレームワークは、問題を解決するための豊富なマルチエージェント ソリューションを提供します。楽しいマルチエージェント システムで遊ぶことに興味がある場合は、仮想ソフトウェア会社を運営するエージェントのコレクションのオープン ソース実装である ChatDev をチェックしてください。 GitHub リポジトリをチェックアウトして、リポジトリをクローンして自分でシステムを実行することもできます。必ずしも期待どおりの結果が得られるとは限りませんが、そのパフォーマンスの良さに驚かれるかもしれません。

この設計パターンを計画するときと同様に、特にエージェントに自由な対話を許可し、エージェントに複数のツールを提供する場合、マルチエージェント コラボレーションの出力の品質を予測するのは難しいことがわかりました。反映とツールの使用のより成熟したパターンは、より信頼性が高くなります。これらのエージェント設計パターンを楽しんで遊んでいただき、素晴らしい結果が得られることを願っています。さらに詳しく知りたい場合は、次の記事をご覧ください:

Andrew Ng: マルチエージェントのコラボレーションが新たな鍵となり、ソフトウェア開発などのタスクがより効率化されるでしょう

  • ##論文タイトル: ソフトウェア開発のためのコミュニケーション エージェント
  • #論文リンク: https://arxiv.org/pdf/2307.07924.pdf

Andrew Ng: マルチエージェントのコラボレーションが新たな鍵となり、ソフトウェア開発などのタスクがより効率化されるでしょう

##論文タイトル: AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation
  • 論文リンク: https://arxiv.org/pdf/2308.08155.pdf

Andrew Ng: マルチエージェントのコラボレーションが新たな鍵となり、ソフトウェア開発などのタスクがより効率化されるでしょう


論文タイトル: METAGPT: マルチエージェント連携フレームワークのためのメタ プログラミング

  • 論文リンク: https://arxiv.org/pdf/2308.00352.pdf
  • 詳細については、原文をお読みください。

この記事を読んだ後、ネチズンは大いに刺激を受けましたが、同じまたは類似のタスクを実行する際のマルチエージェント システムの安定性と予測可能性がまだ不十分であると指摘する人もいます。検討する必要があります。マルチエージェントのコラボレーションの長所と短所は何だと思いますか?

以上がAndrew Ng: マルチエージェントのコラボレーションが新たな鍵となり、ソフトウェア開発などのタスクがより効率化されるでしょうの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
革新を調理する:人工知能がフードサービスを変革する方法革新を調理する:人工知能がフードサービスを変革する方法Apr 12, 2025 pm 12:09 PM

食品の準備を強化するAI まだ初期の使用中ですが、AIシステムは食品の準備にますます使用されています。 AI駆動型のロボットは、ハンバーガーの製造、SAの組み立てなど、食品の準備タスクを自動化するためにキッチンで使用されています

Pythonネームスペースと可変スコープに関する包括的なガイドPythonネームスペースと可変スコープに関する包括的なガイドApr 12, 2025 pm 12:00 PM

導入 Python関数における変数の名前空間、スコープ、および動作を理解することは、効率的に記述し、ランタイムエラーや例外を回避するために重要です。この記事では、さまざまなASPを掘り下げます

ビジョン言語モデル(VLM)の包括的なガイドビジョン言語モデル(VLM)の包括的なガイドApr 12, 2025 am 11:58 AM

導入 鮮やかな絵画や彫刻に囲まれたアートギャラリーを歩くことを想像してください。さて、各ピースに質問をして意味のある答えを得ることができたらどうでしょうか?あなたは尋ねるかもしれません、「あなたはどんな話を言っていますか?

MediaTekは、Kompanio UltraとDimenity 9400でプレミアムラインナップをブーストしますMediaTekは、Kompanio UltraとDimenity 9400でプレミアムラインナップをブーストしますApr 12, 2025 am 11:52 AM

製品のケイデンスを継続して、今月MediaTekは、新しいKompanio UltraやDimenity 9400を含む一連の発表を行いました。これらの製品は、スマートフォン用のチップを含むMediaTekのビジネスのより伝統的な部分を埋めます

今週のAIで:Walmartがファッションのトレンドを設定する前に設定します今週のAIで:Walmartがファッションのトレンドを設定する前に設定しますApr 12, 2025 am 11:51 AM

#1 GoogleはAgent2Agentを起動しました 物語:月曜日の朝です。 AI駆動のリクルーターとして、あなたはより賢く、難しくありません。携帯電話の会社のダッシュボードにログインします。それはあなたに3つの重要な役割が調達され、吟味され、予定されていることを伝えます

生成AIは精神障害に会います生成AIは精神障害に会いますApr 12, 2025 am 11:50 AM

私はあなたがそうであるに違いないと思います。 私たちは皆、精神障害がさまざまな心理学の用語を混ぜ合わせ、しばしば理解できないか完全に無意味であることが多い、さまざまなおしゃべりで構成されていることを知っているようです。 FOを吐き出すために必要なことはすべてです

プロトタイプ:科学者は紙をプラスチックに変えますプロトタイプ:科学者は紙をプラスチックに変えますApr 12, 2025 am 11:49 AM

今週公開された新しい研究によると、2022年に製造されたプラスチックの9.5%のみがリサイクル材料から作られていました。一方、プラスチックは埋め立て地や生態系に積み上げられ続けています。 しかし、助けが近づいています。エンジンのチーム

AIアナリストの台頭:これがAI革命で最も重要な仕事になる理由AIアナリストの台頭:これがAI革命で最も重要な仕事になる理由Apr 12, 2025 am 11:41 AM

主要なエンタープライズ分析プラットフォームAlteryxのCEOであるAndy Macmillanとの私の最近の会話は、AI革命におけるこの重要でありながら過小評価されている役割を強調しました。 MacMillanが説明するように、生のビジネスデータとAI-Ready情報のギャップ

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません