検索
ホームページテクノロジー周辺機器AI機械学習評価のF1スコア指標について詳しく解説

精度メトリクスは、データセット全体にわたってモデルが正しく予測した回数を測定します。ただし、このメトリックは、データ セットがクラスのバランスがとれている場合にのみ信頼できます。つまり、データセット内の各カテゴリには同じ数のサンプルが存在します。ただし、現実世界のデータセットは多くの場合、著しく不均衡が生じており、精度の指標をレンダリングすることはもはや不可能です。 この問題を解決するために、より包括的で完全な機械学習の評価指標として F1 スコアが導入されました。 F1 スコアはモデルの精度と再現率を組み合わせたもので、モデルの精度をより適切に評価できます。適合率は、モデルによって陽性と予測されたサンプルのうち真陽性であるサンプルの数を指します。一方、再現率は、モデルが正しく予測できる真陽性の数を指します。 F1 スコアの計算式は、2 * (正解率 * 再現率) / (正解率 再現率) です。 F1 スコアは、精度と再現率を包括的に考慮することで、特に

#F1 スコアの概念

F1 においてモデルのパフォーマンスをより正確に評価できます。スコアは混同行列と密接に関連しており、分類器の精度、精度、再現率などの指標を評価するために使用されます。精度と再現率を組み合わせることで、F1 スコアはモデルの全体的なパフォーマンスの評価を提供します。

精度は、モデルが行った「肯定的な」予測がどれだけ正しかったかを測定します。

リコールは、データセット内に存在する陽性サンプルの数がモデルによって正しく認識されたかを測定します。

精度と再現率にはトレードオフの関係があり、一方の指標を改善するともう一方の指標が犠牲になります。精度が高いということは、データセット内の実際の陽性サンプルを疑うより厳密な分類器を意味するため、再現率が低くなります。一方、再現率を高めるには、陽性クラスに類似したサンプルを通過させる緩和された分類器が必要です。これにより、一部のエッジケースの陰性サンプルが「陽性クラス」として誤分類され、精度が低下します。理想的には、精度と再現率メトリクスを最大化して、完璧な分類子を取得したいと考えています。

F1 スコアは、調和平均を使用して適合率と再現率を組み合わせたもので、F1 スコアを最大化することは、適合率と再現率を同時に最大化することを意味します。

F1 スコアを計算するにはどうすればよいですか?

F1 スコアの計算を理解するには、まず混同行列を理解する必要があります。上で、F1 スコアは精度と再現率の観点から定義されると述べました。式は次のとおりです。

精度

機械学習評価のF1スコア指標について詳しく解説F1 スコアは、以下に示すように、精度スコアと再現率スコアの調和平均として計算されます。範囲は 0 ~ 100% で、F1 スコアが高いほど分類子の品質が高いことを示します。

機械学習評価のF1スコア指標について詳しく解説マルチクラス データセットの F1 スコアを計算するには、1 対 1 の手法を使用して、データセット内の各クラスの個別のスコアを計算します。クラス精度の調和平均を取得し、値を再現します。次に、さまざまな平均化手法を使用して正味の F1 スコアが計算されます。

マクロ平均 F1 スコア

機械学習評価のF1スコア指標について詳しく解説ミクロ平均 F1 スコアは、マルチクラスのデータ分布にとって意味のある指標です。 「正味」TP、FP、FN 値を使用してインジケーターを計算します。

ネット TP は、データセットのクラス TP スコアの合計を指します。これは、混同行列を各クラスに対応する 1 対全行列に分解することによって計算されます。

サンプル加重 F1 スコア

機械学習評価のF1スコア指標について詳しく解説Fβ スコアは、F1 スコアの汎用バージョンです。 F1 スコアと同様に調和平均を計算しますが、精度または再現率が優先されます。 「β」は重み係数を表し、ユーザーが設定するハイパーパラメータであり、常に 0 より大きくなります。

以上が機械学習評価のF1スコア指標について詳しく解説の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は网易伏羲で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
10生成AIコーディング拡張機能とコードのコードを探る必要があります10生成AIコーディング拡張機能とコードのコードを探る必要がありますApr 13, 2025 am 01:14 AM

ねえ、忍者をコーディング!その日はどのようなコーディング関連のタスクを計画していますか?このブログにさらに飛び込む前に、コーディング関連のすべての問題について考えてほしいです。 終わり? - &#8217を見てみましょう

革新を調理する:人工知能がフードサービスを変革する方法革新を調理する:人工知能がフードサービスを変革する方法Apr 12, 2025 pm 12:09 PM

食品の準備を強化するAI まだ初期の使用中ですが、AIシステムは食品の準備にますます使用されています。 AI駆動型のロボットは、ハンバーガーの製造、SAの組み立てなど、食品の準備タスクを自動化するためにキッチンで使用されています

Pythonネームスペースと可変スコープに関する包括的なガイドPythonネームスペースと可変スコープに関する包括的なガイドApr 12, 2025 pm 12:00 PM

導入 Python関数における変数の名前空間、スコープ、および動作を理解することは、効率的に記述し、ランタイムエラーや例外を回避するために重要です。この記事では、さまざまなASPを掘り下げます

ビジョン言語モデル(VLM)の包括的なガイドビジョン言語モデル(VLM)の包括的なガイドApr 12, 2025 am 11:58 AM

導入 鮮やかな絵画や彫刻に囲まれたアートギャラリーを歩くことを想像してください。さて、各ピースに質問をして意味のある答えを得ることができたらどうでしょうか?あなたは尋ねるかもしれません、「あなたはどんな話を言っていますか?

MediaTekは、Kompanio UltraとDimenity 9400でプレミアムラインナップをブーストしますMediaTekは、Kompanio UltraとDimenity 9400でプレミアムラインナップをブーストしますApr 12, 2025 am 11:52 AM

製品のケイデンスを継続して、今月MediaTekは、新しいKompanio UltraやDimenity 9400を含む一連の発表を行いました。これらの製品は、スマートフォン用のチップを含むMediaTekのビジネスのより伝統的な部分を埋めます

今週のAIで:Walmartがファッションのトレンドを設定する前に設定します今週のAIで:Walmartがファッションのトレンドを設定する前に設定しますApr 12, 2025 am 11:51 AM

#1 GoogleはAgent2Agentを起動しました 物語:月曜日の朝です。 AI駆動のリクルーターとして、あなたはより賢く、難しくありません。携帯電話の会社のダッシュボードにログインします。それはあなたに3つの重要な役割が調達され、吟味され、予定されていることを伝えます

生成AIは精神障害に会います生成AIは精神障害に会いますApr 12, 2025 am 11:50 AM

私はあなたがそうであるに違いないと思います。 私たちは皆、精神障害がさまざまな心理学の用語を混ぜ合わせ、しばしば理解できないか完全に無意味であることが多い、さまざまなおしゃべりで構成されていることを知っているようです。 FOを吐き出すために必要なことはすべてです

プロトタイプ:科学者は紙をプラスチックに変えますプロトタイプ:科学者は紙をプラスチックに変えますApr 12, 2025 am 11:49 AM

今週公開された新しい研究によると、2022年に製造されたプラスチックの9.5%のみがリサイクル材料から作られていました。一方、プラスチックは埋め立て地や生態系に積み上げられ続けています。 しかし、助けが近づいています。エンジンのチーム

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。