検索
ホームページテクノロジー周辺機器AI機械学習の概念: アルゴリズム、トレーニング、モデル、係数

機械学習の概念: アルゴリズム、トレーニング、モデル、係数

機械学習は、明示的にプログラムせずにコンピューターにデータから学習させる方法です。アルゴリズムを使用してデータのパターンを分析および解釈し、人間の介入なしに予測や決定を行います。機械学習の概念を理解するには、アルゴリズム、トレーニング、モデル、係数などの基本概念を習得する必要があります。機械学習を通じて、コンピューターは大量のデータから学習し、パフォーマンスと精度を向上させることができます。この手法は、自然言語処理、画像認識、データ分析などの多くの分野で広く使用されています。機械学習の知識を習得すると、より多くの機会と課題が得られます。

アルゴリズム

機械学習におけるアルゴリズムは、問題を解決したり特定のタスクを達成したりするために使用される一連の命令または手順です。これは、望ましい結果を達成するための段階的なプロセスです。

トレーニング

機械学習におけるトレーニングは、予測または意思決定をアルゴリズムに教えるプロセスです。入力と目的の出力を含む例が提供されることにより、アルゴリズムは入力を目的の出力にマッピングする方法を学習します。

機械学習アルゴリズムに関係する可能性のあるいくつかの一般的な操作:

データ前処理: データのクリーニング、フォーマット、正規化が含まれます。アルゴリズムの使用に適しています。これには、欠落データまたは重複データの削除、外れ値の処理、カテゴリ変数のコーディングなどのタスクが含まれる場合があります。

特徴抽出: アルゴリズムが使用する入力特徴または変数の選択と変換が含まれます。これには、次元削減、特徴のスケーリング、特徴の選択などのタスクが含まれる場合があります。

モデルの選択: 予測や決定を行うために使用される適切なモデルまたはアーキテクチャの選択が含まれます。これには、線形回帰モデル、デシジョン ツリー、ニューラル ネットワークの選択などのタスクが含まれる場合があります。

トレーニング: 前処理されたデータを使用して、選択したモデルをトレーニングします。アルゴリズムは、入力特徴と目的の出力の間の関係を学習します。

評価: さまざまな手法を使用して、トレーニングされたモデルのパフォーマンスを評価します。

ハイパーパラメータ調整: パフォーマンスを最適化するために、モデルとアルゴリズムの設定を調整することが含まれます。

デプロイメント: トレーニングされたモデルを取得し、それを本番環境にデプロイして、新しいデータに対する予測や意思決定に使用できるようにします。

監視とメンテナンス: デプロイされたモデルのパフォーマンスを監視し、パフォーマンスを向上させるために必要な調整を行います。

これらは、問題とデータに応じて、機械学習アルゴリズムに関係する可能性のある一般的な操作の一部です。

モデル

機械学習アルゴリズムとモデルは関連していますが、同じものではありません。モデルは、入力フィーチャと出力フィーチャの間の関係を数学的に表現したものです。

アルゴリズムは一連の命令またはルールであり、データの最適な表現を見つけるプロセスです。この表現はモデルと呼ばれます。このアルゴリズムは入力データを受け取り、それに数学的演算を適用して、モデルを構成する方程式または関数に最適なパラメーターまたは係数のセットを見つけます。

機械学習では、アルゴリズムがデータから学習して予測を行うために使用する数式または関数は、多くの場合モデルと呼ばれます。データから学習するプロセスは、多くの場合、モデルのトレーニングと呼ばれます。これらのモデルは、データから学習する必要がある一連のパラメーターによって表すことができます。機械学習アルゴリズムの目標は、データに適合し、新しいデータに適切に一般化する最適なパラメーターのセットを見つけることです。

係数

機械学習アルゴリズムの目標は、一連の数式または関数で表されるモデルを学習することです。新しい予測に使用されます。 目に見えないデータに対して予測を行います。

アルゴリズムはデータ セットから開始し、それに数学的演算を適用して、データに最も適合する方程式のパラメーターの最適なセットを見つけます。これらのパラメーター (係数とも呼ばれます) を使用して、新しいデータに対して予測が行われます。

つまり、機械学習アルゴリズムの目標は、モデルを構成する数式または関数の最適な係数セットを見つけて、それを使用してモデルを正確に予測できるようにすることです。新しいデータ。

機械学習用語では、係数を指すために使用できる単語:

重み: モデルがニューラル ネットワークまたは線形の場合モデル 、この用語はよく使用されます。重みはアルゴリズムによって学習され、予測を行うために使用される値です。

パラメータ: この用語は、アルゴリズムが学習して予測を行うために使用する任意の値を指す一般的な用語です。

ハイパーパラメータ: この用語は、トレーニング中にアルゴリズムによって学習されず、ユーザーによって設定されるパラメータを指します。これらは、学習率や隠れユニットの数など、アルゴリズムの動作を制御するためによく使用されます。

特徴の重要度: これは、データセット内で予測を行う際の特徴 (変数) の相対的な重要性を指します。各特徴がモデルの予測にどの程度寄与しているかを測定します。

モデル係数: これは、トレーニング中にアルゴリズムによって学習されたモデル パラメーターを指すために使用される用語です。これは、線形回帰アルゴリズムおよびロジスティック回帰アルゴリズムで一般的に使用される用語です。

上記はすべて、機械学習におけるアルゴリズム、トレーニング、モデル、係数の概念に関するものです。

一般に、アルゴリズムは機械学習システムの「頭脳」です。入力データを推論して理解する方法として関数を使用します。アルゴリズムは、これらの方程式または関数をデータに適用し、予測値と真の値の間の誤差を最小限に抑えるためにパラメーターを調整することによって「思考」します。このプロセスの結果は、データ内の学習されたパターンまたは関係を表す係数のセットであり、これが特定のデータセットから学習された「知識」です。これらのパターンは、機械学習システムの「思考」部分である新しいデータの予測に使用できます。

以上が機械学習の概念: アルゴリズム、トレーニング、モデル、係数の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は网易伏羲で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
10生成AIコーディング拡張機能とコードのコードを探る必要があります10生成AIコーディング拡張機能とコードのコードを探る必要がありますApr 13, 2025 am 01:14 AM

ねえ、忍者をコーディング!その日はどのようなコーディング関連のタスクを計画していますか?このブログにさらに飛び込む前に、コーディング関連のすべての問題について考えてほしいです。 終わり? - &#8217を見てみましょう

革新を調理する:人工知能がフードサービスを変革する方法革新を調理する:人工知能がフードサービスを変革する方法Apr 12, 2025 pm 12:09 PM

食品の準備を強化するAI まだ初期の使用中ですが、AIシステムは食品の準備にますます使用されています。 AI駆動型のロボットは、ハンバーガーの製造、SAの組み立てなど、食品の準備タスクを自動化するためにキッチンで使用されています

Pythonネームスペースと可変スコープに関する包括的なガイドPythonネームスペースと可変スコープに関する包括的なガイドApr 12, 2025 pm 12:00 PM

導入 Python関数における変数の名前空間、スコープ、および動作を理解することは、効率的に記述し、ランタイムエラーや例外を回避するために重要です。この記事では、さまざまなASPを掘り下げます

ビジョン言語モデル(VLM)の包括的なガイドビジョン言語モデル(VLM)の包括的なガイドApr 12, 2025 am 11:58 AM

導入 鮮やかな絵画や彫刻に囲まれたアートギャラリーを歩くことを想像してください。さて、各ピースに質問をして意味のある答えを得ることができたらどうでしょうか?あなたは尋ねるかもしれません、「あなたはどんな話を言っていますか?

MediaTekは、Kompanio UltraとDimenity 9400でプレミアムラインナップをブーストしますMediaTekは、Kompanio UltraとDimenity 9400でプレミアムラインナップをブーストしますApr 12, 2025 am 11:52 AM

製品のケイデンスを継続して、今月MediaTekは、新しいKompanio UltraやDimenity 9400を含む一連の発表を行いました。これらの製品は、スマートフォン用のチップを含むMediaTekのビジネスのより伝統的な部分を埋めます

今週のAIで:Walmartがファッションのトレンドを設定する前に設定します今週のAIで:Walmartがファッションのトレンドを設定する前に設定しますApr 12, 2025 am 11:51 AM

#1 GoogleはAgent2Agentを起動しました 物語:月曜日の朝です。 AI駆動のリクルーターとして、あなたはより賢く、難しくありません。携帯電話の会社のダッシュボードにログインします。それはあなたに3つの重要な役割が調達され、吟味され、予定されていることを伝えます

生成AIは精神障害に会います生成AIは精神障害に会いますApr 12, 2025 am 11:50 AM

私はあなたがそうであるに違いないと思います。 私たちは皆、精神障害がさまざまな心理学の用語を混ぜ合わせ、しばしば理解できないか完全に無意味であることが多い、さまざまなおしゃべりで構成されていることを知っているようです。 FOを吐き出すために必要なことはすべてです

プロトタイプ:科学者は紙をプラスチックに変えますプロトタイプ:科学者は紙をプラスチックに変えますApr 12, 2025 am 11:49 AM

今週公開された新しい研究によると、2022年に製造されたプラスチックの9.5%のみがリサイクル材料から作られていました。一方、プラスチックは埋め立て地や生態系に積み上げられ続けています。 しかし、助けが近づいています。エンジンのチーム

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい