検索
ホームページテクノロジー周辺機器AIAzure Semantic Search と OpenAI を使用してコグニティブ検索システムを構築する

今日のデジタル時代では、強力でスケーラブルで効率的なシステムを持つことは、単なる競争上の優位性ではありません。それは必要です。ユーザー入力処理を最適化してドキュメント検索を簡素化することに取り組んでいる場合でも、サービスとプラットフォームの組み合わせが比類のないパフォーマンスの鍵となります。この記事では、Azure Cognitive Services のパワーと OpenAI の機能を組み合わせた総合的なアプローチについて説明します。意図認識、ドキュメント フィルタリング、ドメイン固有のアルゴリズム、テキスト要約を詳しく調べることで、ユーザーの意図を理解するだけでなく、情報を効率的に処理して表示するシステムの作成方法を学びます。

これを構築します:

Azure Semantic Search と OpenAI を使用してコグニティブ検索システムを構築する

環境のセットアップ

本題に入る前に、確認しましょう。インストールしました。 必要なパッケージをダウンロードし、環境変数を設定します。

!pip show azure-search-documents
%pip install azure-search-documents --pre
%pip show azure-search-documents
!pip install python-dotenv
!pip install openai
import os
import requests
import json
import openai
openai.api_key = os.getenv("AZURE_OPENAI_KEY")
openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT")
openai.api_type = 'azure'
openai.api_version = '2023-05-15'
# Look in Azure OpenAI Studio > Deployments
deployment_name = 'gpt-35-turbo'

ここでは、必要な API キー、エンドポイント、タイプを使用して OpenAI 環境をセットアップします。

Azure Search のセットアップ

Azure Semantic Search を使用するには、必要なモジュールをインポートし、環境をセットアップする必要があります。

import os
from azure.core.credentials import AzureKeyCredential
from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents import SearchClient
from azure.search.documents.indexes.models import (
    ComplexField,
    CorsOptions,
    SearchIndex,
    ScoringProfile,
    SearchFieldDataType,
    SimpleField,
    SearchableField
)

モジュールをインポートした後、Azure Search Service エンドポイントと API キーを設定できるようになります:

# 从环境中设置服务端点和 API 密钥
service_name = "xxxxx"
admin_key ="xxxxx"
# 如果您共享密钥 - 请确保您的 index_name 是唯一的!
index_name = "hotels-quickstart"
# 创建 SDK 客户
endpoint = "https://{}.search.windows.net/".format(service_name)
admin_client = SearchIndexClient(endpoint=endpoint,
                      index_name=index_name,
                      credential=AzureKeyCredential(admin_key))

search_client = SearchClient(endpoint=endpoint,
                      index_name=index_name,
                      credential=AzureKeyCredential(admin_key))

(注: コードを共有する前に必ずキーをマスクまたは非表示にしてください。)

Azure Semantic Search のインデックスの準備

Azure Search にデータを追加する前に、データの構造を記述するインデックスを定義する必要があります:

# 删除索引(如果存在)
try:
    result = admin_client.delete_index(index_name)
    print ('Index', index_name, 'Deleted')
except Exception as ex:
    print (ex)

このコード スニペットにより、インデックスが既に存在する場合は削除されます。これは、コードを再実行する場合やインデックスを変更する場合に便利です。

ここで、インデックスのスキーマを指定しましょう:

# 指定索引模式
name = index_name 
fields = [ 
        SimpleField(name= "HotelId" , type=SearchFieldDataType.String, key= True ), 
        SearchableField(name= "HotelName" , type=SearchFieldDataType.String, sortable= True ), 
        SearchableField (名称= “描述”,类型=SearchFieldDataType.String,analyzer_name= “en.lucene”),
        SearchableField(名称= “Description_fr”,类型=SearchFieldDataType.String,analyzer_name= “fr.lucene”),
        SearchableField(名称= “类别”、 type=SearchFieldDataType.String、facetable= True、filterable= True、sortable= True )、
        SearchableField(name= "Tags"、collection= True、type=SearchFieldDataType.String、facetable= True、filterable= True )、
        SimpleField(name = “ParkingInincluded”,类型=SearchFieldDataType.Boolean,facetable= True,filterable= True,sortable= True),
        SimpleField(name= “LastRenovationDate”,type=SearchFieldDataType.DateTime关闭设置,facetable= True,filterable=True、sortable= True )、
        SimpleField(name= "Rating"、 type=SearchFieldDataType.Double、facetable= True、filterable= True、sortable= True )、
        ComplexField(name= "地址"、 fields=[ 
            SearchableField(name= " StreetAddress"、 type=SearchFieldDataType.String)、
            SearchableField(name= "City"、 type=SearchFieldDataType.String、facetable= True、 filterable= True、 sortable= True )、
            SearchableField(name= "StateProvince"、 type=SearchFieldDataType.String、facetable= True、filterable= True、sortable= True )、
            SearchableField(name= "邮政编码"、 type=SearchFieldDataType.String、facetable= True、filterable= True、sortable= True )、
            SearchableField(name = “国家”,类型= SearchFieldDataType.String,facetable = True,filterable = True,sortable = True),
        ])
    ] 
cors_options = CorsOptions(allowed_origins = [ “*” ],max_age_in_seconds = 60)
Scoring_profiles = [] 
suggester = [{ 'name' : 'sg' , 'source_fields' : [ '标签' , '地址/城市' , '地址/国家' ]}]

次に、Azure 上にこのインデックスを作成する必要があります:

index = SearchIndex(
    name=name,
    fields=fields,
    scoring_profiles=scoring_profiles,
    suggesters = suggester,
    cors_options=cors_options)
try:
    result = admin_client.create_index(index)
    print ('Index', result.name, 'created')
except Exception as ex:
    print (ex)

インデックスを作成した後、次のことを行う必要があります。それにドキュメントを入力します。どのような種類のドキュメントでも使用できることに注意してください。ここでは、BLOB ストレージに保持されるドキュメントを手動で追加するだけです:

文档 = [ 
    { 
    "@search.action": "上传", "@search.action" : "上传" , 
    "HotelId" : "1" , 
    "HotelName" : "秘密点汽车旅馆" , 
    "Description" : "酒店地理位置优越,位于纽约市中心的城市主要商业干道上。几分钟即可到达时代广场和城市的历史中心,以及使纽约成为美国最具吸引力的城市之一的其他名胜古迹和国际大都市。” ,
    “Description_fr”:“L'hôtel est idéalement situé sur la prime artère Commerciale de la ville en plein cœur de New York.A insi que d'autres lieux d'intérêt qui font纽约的城市充满魅力和美国的国际化。” , 
    "Category" : "精品店" , 
    "Tags" : [ "游泳池" , "空调" , "礼宾服务" ], 
    "ParkingInincluded" : "false" , 
    "LastRenovationDate" : "1970-01-18T00:00:00Z ”,
    "Rating" : 3.60 , 
    "Address" : {    
        “StreetAddress”:“677 第五大道”,
        “City”:“纽约”,
        “StateProvince”:“纽约” ,
        “PostalCode”:“10022”,
        “Country”:“美国”
         } 
    },
    { 
    “@search. action" : "上传" , 
    "HotelId" : "2" , 
    "HotelName" : "双圆顶汽车旅馆" , 
    "Description" :“该酒店坐落在一座十九世纪的广场上,该广场已按照最高建筑标准进行扩建和翻新,打造出一座现代化、实用的一流酒店,艺术和独特的历史元素与最现代的舒适设施共存。” , 
    "Description_fr" : "L'hôtel 位于十九世纪的地方,是一座现代化酒店的高级规范建筑,在艺术和历史独特方面具有一流的功能和一流的设计舒适与现代共存。” , 
    "Category" : "精品店" , 
    "Tags" : [ "泳池" ,], 
    "ParkingInincluded" : "false" , 
    "LastRenovationDate" : "1979-02-18T00:00:00Z" , 
    "Rating" : 3.60 , 
    "Address" : { 
        "StreetAddress" : "140 大学城中心" , 
        "City”:“萨拉索塔”,
        “StateProvince”:“佛罗里达州”,
        “PostalCode”:“34243”,
        “Country”:“美国”
         } 
    },
    { 
    "@search.action" : "上传" , 
    "HotelId" :"3" , 
    "HotelName" : "三重景观酒店" , 
    "Description" : "该酒店在 William Dough 的管理下以其卓越的美食脱颖而出,他为酒店的所有餐厅服务提供建议并监督。" , 
    "Description_fr" : "L'hôtel 位于十九世纪的地方,是一座现代化酒店的高级规范建筑,在艺术和历史独特方面具有一流的功能和一流的设计舒适与现代共存。” , 
    "Category" : "度假村中心" ,
    "Tags" : [ "酒吧" , "欧陆式早餐" ], 
    "ParkingInincluded" : "true" , 
    "LastRenovationDate" : "2015-09-20T00:00:00Z" , 
    "Rating" : 4.80 , 
    "Address" : { 
        "StreetAddress" : “3393 Peachtree Rd”、
        “City”:“亚特兰大”、
        “StateProvince”:“GA”、
        “PostalCode”:“30326”、
        “Country”:“美国”
         } 
    }
]

次に、これらのドキュメントをセマンティック検索インデックスにプッシュします。

try:
    result = search_client.upload_documents(documents=documents)
    print("Upload of new document succeeded: {}".format(result[0].succeeded))
except Exception as ex:
    print (ex.message)

OpenAI との統合

OpenAI への接続を確立しましょう:

question="What is the address of ChatGpt Hotel?"

次に、Azure OpenAI 接続を追加します:

###
import os
import requests
import json
import openai
os.environ["AZURE_OPENAI_KEY"] = "xxxx"
os.environ["AZURE_OPENAI_ENDPOINT"] = "xxxx"
openai.api_key = os.getenv("AZURE_OPENAI_KEY")
openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT")
openai.api_type = 'azure'
openai.api_version = '2023-05-15'
# 在 Azure OpenAI Studio > 部署中查找
deployment_name = 'gpt-35-turbo'
###
# 定义一个函数,根据系统消息和消息创建提示
def create_prompt(system_message, messages):
    prompt = system_message
    message_template = "\n<|im_start|>{}\n{}\n<|im_end|>"
    for message in messages:
        prompt += message_template.format(message[&#39;sender&#39;], message[&#39;text&#39;])
    prompt += "\n<|im_start|>assistant\n"
    return prompt
# 定义系统消息
system_message_template = "<|im_start|>system\n{}\n<|im_end|>"
system_message = system_message_template.format("")
print(system_message)

この時点で、セマンティック検索と Azure OpenAI を使用できるようになります。セマンティック検索をクエリしてみましょう:

import json
results =  search_client.search(search_text=question, include_total_count=True, select=&#39;HotelId,HotelName,Tags,Address&#39;)=  search_client.search(search_text=question, include_total_count=True, select=&#39;HotelId,HotelName,Tags,Address&#39;)
json_results=""
print (&#39;Total Documents Matching Query:&#39;, results.get_count())
for result in results:
    #print("{}: {}: {}".format(result["HotelId"], result["HotelName"], result["Tags"],results["Address"]))
    json_results+=str(result)
print(json_results)

検索結果が手元にあるので、Azure OpenAI を利用して結果を解釈したり、さらに処理したりできます。

# 创建消息列表来跟踪对话
messages = [{"sender": "user", "text": "Hello, take into account the following information "+json_results},
            {"sender": "user", "text": question},
            ]
response = openai.Completion.create(
  engine=deployment_name,
  prompt= create_prompt(system_message, messages),
  temperature=0.7,
  max_tokens=800,
  top_p=0.95,
  frequency_penalty=0,
  presence_penalty=0,
    stop=["<|im_end|>"])
print(response)

このコードは、OpenAI モデルに検索結果と元の質問を要求し、データに基づいて意味のある情報を処理して提供できるようにします。

結論

この記事では、Azure Semantic Search の機能と OpenAI の機能を組み合わせる方法を学びました。これら 2 つの強力なツールを統合することで、アプリケーションで豊富でインテリジェントな検索結果をユーザーに提供できます。

以上がAzure Semantic Search と OpenAI を使用してコグニティブ検索システムを構築するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事はDr. Ernesto Leeで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
革新を調理する:人工知能がフードサービスを変革する方法革新を調理する:人工知能がフードサービスを変革する方法Apr 12, 2025 pm 12:09 PM

食品の準備を強化するAI まだ初期の使用中ですが、AIシステムは食品の準備にますます使用されています。 AI駆動型のロボットは、ハンバーガーの製造、SAの組み立てなど、食品の準備タスクを自動化するためにキッチンで使用されています

Pythonネームスペースと可変スコープに関する包括的なガイドPythonネームスペースと可変スコープに関する包括的なガイドApr 12, 2025 pm 12:00 PM

導入 Python関数における変数の名前空間、スコープ、および動作を理解することは、効率的に記述し、ランタイムエラーや例外を回避するために重要です。この記事では、さまざまなASPを掘り下げます

ビジョン言語モデル(VLM)の包括的なガイドビジョン言語モデル(VLM)の包括的なガイドApr 12, 2025 am 11:58 AM

導入 鮮やかな絵画や彫刻に囲まれたアートギャラリーを歩くことを想像してください。さて、各ピースに質問をして意味のある答えを得ることができたらどうでしょうか?あなたは尋ねるかもしれません、「あなたはどんな話を言っていますか?

MediaTekは、Kompanio UltraとDimenity 9400でプレミアムラインナップをブーストしますMediaTekは、Kompanio UltraとDimenity 9400でプレミアムラインナップをブーストしますApr 12, 2025 am 11:52 AM

製品のケイデンスを継続して、今月MediaTekは、新しいKompanio UltraやDimenity 9400を含む一連の発表を行いました。これらの製品は、スマートフォン用のチップを含むMediaTekのビジネスのより伝統的な部分を埋めます

今週のAIで:Walmartがファッションのトレンドを設定する前に設定します今週のAIで:Walmartがファッションのトレンドを設定する前に設定しますApr 12, 2025 am 11:51 AM

#1 GoogleはAgent2Agentを起動しました 物語:月曜日の朝です。 AI駆動のリクルーターとして、あなたはより賢く、難しくありません。携帯電話の会社のダッシュボードにログインします。それはあなたに3つの重要な役割が調達され、吟味され、予定されていることを伝えます

生成AIは精神障害に会います生成AIは精神障害に会いますApr 12, 2025 am 11:50 AM

私はあなたがそうであるに違いないと思います。 私たちは皆、精神障害がさまざまな心理学の用語を混ぜ合わせ、しばしば理解できないか完全に無意味であることが多い、さまざまなおしゃべりで構成されていることを知っているようです。 FOを吐き出すために必要なことはすべてです

プロトタイプ:科学者は紙をプラスチックに変えますプロトタイプ:科学者は紙をプラスチックに変えますApr 12, 2025 am 11:49 AM

今週公開された新しい研究によると、2022年に製造されたプラスチックの9.5%のみがリサイクル材料から作られていました。一方、プラスチックは埋め立て地や生態系に積み上げられ続けています。 しかし、助けが近づいています。エンジンのチーム

AIアナリストの台頭:これがAI革命で最も重要な仕事になる理由AIアナリストの台頭:これがAI革命で最も重要な仕事になる理由Apr 12, 2025 am 11:41 AM

主要なエンタープライズ分析プラットフォームAlteryxのCEOであるAndy Macmillanとの私の最近の会話は、AI革命におけるこの重要でありながら過小評価されている役割を強調しました。 MacMillanが説明するように、生のビジネスデータとAI-Ready情報のギャップ

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。