検索
ホームページテクノロジー周辺機器AIIBM は人工知能にアナログ コンピューティングを使用して AI コンピューティングを再構築します

IBM は人工知能にアナログ コンピューティングを使用して AI コンピューティングを再構築します

IBM は、人工知能の計算方法を再構築する方法を研究してきました。 IBMの研究者は、人工知能(AI)にアナログ・コンピューティングを使用する画期的な進歩について説明した論文を発表した。

人工知能システムを構築する場合、データ モデルをトレーニングする必要があります。これは、猫のさまざまな特徴を表す画像データなど、トレーニング データのさまざまなサブセットにさまざまな重みを割り当てることです。

従来の (デジタル) コンピューターで人工知能システムをトレーニングする場合、人工知能モデルはメモリ内に分散して保存されます。コンピューティングタスクでは、メモリと処理ユニットの間でデータを継続的に転送する必要があります。 IBMによれば、このプロセスによりコンピューティングの速度が低下し、達成可能なエネルギー効率が制限されるという。

人工知能にアナログ コンピューティングを使用すると、デジタル コンピューター上で実行される人工知能と同じ結果を達成するためのより効率的な方法が提供される可能性があります。 IBM は、シミュレートされたインメモリ コンピューティング、またはシミュレートされた人工知能を、生物学的な脳のニューラル ネットワークがどのように動作するかの重要な機能を借用するテクノロジーとして定義しています。研究者らによると、人間や他の多くの動物の脳では、重みと呼ばれるシナプスの強さがニューロン間の通信を決定しているという。

シミュレーションされた人工知能システムでは、これらのシナプスの重みは、相変化メモリ (PCM) などのナノスケールの抵抗メモリデバイスのコンダクタンス値にその場で保存される、と IBM は述べています。その後、それらはディープ ニューラル ネットワークで累積乗算演算を実行するために使用されます。

IBM は、このテクノロジーにより、メモリとプロセッサ間でデータを常に送信する必要性を軽減できると述べています。

Nature Electronics に掲載された論文の中で、IBM Research は、さまざまなディープ ニューラル ネットワーク (DNN) 推論タスクを実行できる混合信号アナログ人工知能チップを紹介しました。 IBMによると、これはテストにおいてデジタルチップと同様にコンピュータービジョンAIタスクを実行する初のアナログチップであり、後者よりもエネルギー効率が高いという。

このチップは、IBM のアルバニー ナノテクノロジー センターで製造されています。これは 64 個のアナログ メモリ コンピューティング コア (またはチップ) で構成されており、各コアには 256 x 256 のシナプス セルのクロスバー アレイが含まれています。 IBMによると、アナログデータとデジタルデータの間で変換を行うため、時間ベースのアナログデジタルコンバーターが各チップに統合されているという。各チップには軽量のデジタル処理ユニットも統合されており、IBMによれば、非線形ニューロン活性化機能とスケーリング操作を実行できるという。

IBM は、各チップが DNN モデルの層に関連する計算を実行できると述べました。この論文の著者らは、「このチップを使用して、アナログ メモリ コンピューティングの計算精度に関する最も包括的な研究を実施し、CIFAR-10 画像データ セットで 92.81% の精度を達成しました。」と述べています。

以上がIBM は人工知能にアナログ コンピューティングを使用して AI コンピューティングを再構築しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
AIインデックス2025を読む:AIはあなたの友人、敵、または副操縦士ですか?AIインデックス2025を読む:AIはあなたの友人、敵、または副操縦士ですか?Apr 11, 2025 pm 12:13 PM

スタンフォード大学ヒト指向の人工知能研究所によってリリースされた2025年の人工知能インデックスレポートは、進行中の人工知能革命の良い概要を提供します。 4つの単純な概念で解釈しましょう:認知(何が起こっているのかを理解する)、感謝(利益を見る)、受け入れ(顔の課題)、責任(責任を見つける)。 認知:人工知能はどこにでもあり、急速に発展しています 私たちは、人工知能がどれほど速く発展し、広がっているかを強く認識する必要があります。人工知能システムは絶えず改善されており、数学と複雑な思考テストで優れた結果を達成しており、わずか1年前にこれらのテストで惨めに失敗しました。 2023年以来、複雑なコーディングの問題や大学院レベルの科学的問題を解決することを想像してみてください

Meta Llama 3.2を始めましょう - 分析VidhyaMeta Llama 3.2を始めましょう - 分析VidhyaApr 11, 2025 pm 12:04 PM

メタのラマ3.2:マルチモーダルとモバイルAIの前進 メタは最近、ラマ3.2を発表しました。これは、モバイルデバイス向けに最適化された強力なビジョン機能と軽量テキストモデルを特徴とするAIの大幅な進歩です。 成功に基づいてo

AVバイト:Meta' s llama 3.2、GoogleのGemini 1.5などAVバイト:Meta' s llama 3.2、GoogleのGemini 1.5などApr 11, 2025 pm 12:01 PM

今週のAIの風景:進歩、倫理的考慮、規制の議論の旋風。 Openai、Google、Meta、Microsoftのような主要なプレーヤーは、画期的な新しいモデルからLEの重要な変化まで、アップデートの急流を解き放ちました

マシンと話すための人的費用:チャットボットは本当に気にすることができますか?マシンと話すための人的費用:チャットボットは本当に気にすることができますか?Apr 11, 2025 pm 12:00 PM

つながりの慰めの幻想:私たちはAIとの関係において本当に繁栄していますか? この質問は、MIT Media Labの「AI(AHA)で人間を進める」シンポジウムの楽観的なトーンに挑戦しました。イベントではCondedgを紹介している間

PythonのScipy Libraryの理解PythonのScipy Libraryの理解Apr 11, 2025 am 11:57 AM

導入 あなたが科学者またはエンジニアで複雑な問題に取り組んでいると想像してください - 微分方程式、最適化の課題、またはフーリエ分析。 Pythonの使いやすさとグラフィックスの機能は魅力的ですが、これらのタスクは強力なツールを必要とします

ラマ3.2を実行する3つの方法-Analytics Vidhyaラマ3.2を実行する3つの方法-Analytics VidhyaApr 11, 2025 am 11:56 AM

メタのラマ3.2:マルチモーダルAIパワーハウス Metaの最新のマルチモーダルモデルであるLlama 3.2は、AIの大幅な進歩を表しており、言語理解の向上、精度の向上、および優れたテキスト生成機能を誇っています。 その能力t

Dagsterでデータ品質チェックを自動化しますDagsterでデータ品質チェックを自動化しますApr 11, 2025 am 11:44 AM

データ品質保証:ダグスターと大きな期待でチェックを自動化する データ駆動型のビジネスにとって、高いデータ品質を維持することが重要です。 データの量とソースが増加するにつれて、手動の品質管理は非効率的でエラーが発生しやすくなります。

メインフレームはAI時代に役割を果たしていますか?メインフレームはAI時代に役割を果たしていますか?Apr 11, 2025 am 11:42 AM

MainFrames:AI革命のUnsung Heroes サーバーは汎用アプリケーションで優れており、複数のクライアントの処理を行いますが、メインフレームは大量のミッションクリティカルなタスク用に構築されています。 これらの強力なシステムは、頻繁にヘビルで見られます

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません