人工ニューラル ネットワークでは、ニューロンと呼ばれる多くのコンポーネントがデータに埋め込まれており、連携して顔認識などの問題を解決します。ニューラル ネットワークは、シナプス (ニューロン間の接続) を繰り返し調整して、結果として得られる行動パターンがより良い解決策であるかどうかを判断します。しかし、時間の経過とともに、ニューラル ネットワークは最終的に計算結果の中で最適な動作パターンを見つけます。次に、これらのモードをデフォルト値として選択し、人間の脳の学習プロセスを模倣します。
AI システムは現実世界への応用がますます増えていますが、AI システムの駆動に使用されるハードウェアの制限を考慮すると、依然として重大な課題に直面しています。この問題を解決するために、研究者たちは人間の脳にヒントを得たニューロモーフィック コンピューター ハードウェアを開発しました。
たとえば、ニューロモーフィック マイクロチップ コンポーネントは、一定期間内に特定の数の入力信号を受信した場合にのみ、スパイクを発したり、出力信号を生成したりする場合があります。これは、実際の生物学的ニューロンの動作をより厳密にシミュレートする戦略です。一般的な人工ニューラル ネットワークと比較して、これらのデバイスはスパイクの発生が非常に少ないため、処理されるデータが大幅に少なくなり、原理的に必要な電力と通信帯域幅がはるかに少なくなります。
ただし、ニューロモーフィック ハードウェアでは従来の電子機器が使用されることが多く、最終的には実現できる複雑な機能と信号伝達速度が制限されます。たとえば、各生物学的ニューロンは数万のシナプスを持つことができますが、ニューロモーフィック デバイスでは人工ニューロンを相互に接続することが困難です。この問題に対する効果的な解決策は多重化です。つまり、1 つの信号チャネルで同時により多くの信号を伝送できます。ただし、チップが大きくなり、より高度になるにつれて、コンピューティング速度が遅くなる可能性があります。
最近の新しい研究で、国立標準技術研究所 (NIST) の研究者は、ニューロンを接続するための光送信機と受信機の使用を調査しました。原理的には、光リンク、つまり光導波路は、各ニューロンを光速の通信速度で何千もの他のニューロンに接続できます。関連する論文が Nature Electronics に掲載されました。
研究概要
研究者
は、単一光子を検出できる超伝導ナノワイヤデバイスを使用しました。最小単位であり、エネルギー効率の物理的な限界とみなすことができます。 以下のレンダリングは、ニューロン シナプス (脳内のニューロン間の境界点) をシミュレートする超電導回路を使用して、将来の人工光電子ニューロンを作成する方法を示しています。
フォトニックニューラル計算の実行は、通常、長時間にわたって光を捕捉できる光キャビティを必要とするため、しばしば困難を伴います。統合されたマイクロチップ上にそのようなキャビティを作成し、それらを多くの導波路に接続することは非常に困難です。
そこで研究者らは、各検出器からの出力信号を長さ約 2 ピコ秒の超高速電気パルスに変換するハイブリッド回路システムを開発しました。
これらのパルスは、超伝導量子干渉計のネットワークまたは超伝導量子干渉計 (SQUID) 内の単一の磁気ゆらぎまたは磁束によって引き起こされます。 NISTの研究者で責任著者のジェフリー・シェインライン氏は、「私たちは長年にわたり、テクノロジーを可能にする物理的限界の性質を発見する理論的研究に熱心に取り組んできました。 「ニューロモーフィック コンピューティングを実現する。原理。この目標の追求により、単一光子エネルギー レベルでの光通信とジョセフソン接合によって実行されるニューラル ネットワーク計算を組み合わせるというこのコンセプトにたどり着きました。」伝導性量子干渉計 (SQUID) は、1 つ以上のジョセフソン構造で構成され、上下に超電導材料を配置し、中央が絶縁膜で分離されたサンドイッチ構造です。ジョセフソン接合 (JJ) を流れる電流が特定のしきい値を超えると、超伝導量子干渉計は磁束を生成し始めます。
光子を感知した後、単一光子検出器 (SPD) が磁束量子を生成し、それが SQUID の超伝導ループ内の電流として収集されます。この保存された電流は一種の記憶として機能し、ニューロンがスパイクした回数を記録します。
#下の図 2 は、レイアウトと完成した回路を示しています。 a はシナプス回路全体の 3D レイアウト、b は完成した製造の顕微鏡画像、c は SPD のレイアウト、d は製造中の SPD、e は JJ とシャント抵抗のレイアウト、f は JJ とシャント製造時、g は DR (樹状受容、樹状受容) サイクルに使用される SQUID、h は製造時の DR SQUID です。
Shainline 氏は、「実際に回路を動作させるのは非常に簡単でした。設計段階で製造と製造にかなりの時間がかかりました。 「実験ではありましたが、実際には、一方で、私たちが最初にこれらの回路を製造したとき、それらはすでに動作していました。これは、そのようなシステムの将来の拡張性にとって良い前兆です。」
研究者 単一の回路を統合する-ジョセフソン接合を備えた光子検出器は超伝導シナプスを形成します。 研究者らは、シナプスのピーク周波数は 1,000 万 Hz を超える可能性があり、各シナプス イベントは約 33 アトジュールのエネルギーを消費する (1 アトジュールは 10^-18 ジュールに等しい) と計算しました。比較すると、人間のニューロンの最大平均スパイク レートはわずか約 340 Hz ですが、各シナプス イベントは約 10 フェムトジュールを消費します (1 フェムトジュールは 10^-15 ジュールに相当します)。
以下の図 3 は、時定数 6.25 μs、インダクタンス 2.5 μH の単一シナプスの特性を示しています。測定結果は、それぞれ 8.06 μs と 3.2 μH という実際の値を示しています。
以下の図 4 は、シナプス伝達関数が広範囲の時間スケールにわたって操作できることを示しています。
さらに、研究者は、これらの回路システム デバイスの出力時間が数百ナノ秒からミリ秒に変化することを認識できます。これは、これらのハードウェアが、高速電子デバイス間の通信から人間と機械の間のよりゆっくりとした対話に至るまで、さまざまなシステムに接続できることも意味します。
研究者らは将来、開発した新しいシナプスをオンチップ光源と組み合わせて、完全に統合された超伝導ニューロンを作成する予定です。 Shainline 氏は、「完全に統合された超伝導ニューロンの実現にはまだ大きな課題がありますが、最後の部分を統合できれば、最終的には人工知能のための強力なコンピューティング プラットフォームになる可能性があると信じる十分な理由があります。」
以上が超高効率の人工光電ニューロンは実現するのでしょうか?天然のニューロンよりも30,000倍速い、研究結果がNatureサブジャーナルに掲載の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

導入 Pythonはオブジェクト指向のプログラミング言語(またはoop)です。前の記事では、その多目的な性質を調査しました。このため、Pythonはさまざまなデータ型を提供します。これはMに広く分類できます

導入 Tableauは、効率的なデータ分析とプレゼンテーションのために、世界中で企業や個人が現在使用している最も堅牢なデータ視覚化ツールの1つと考えられています。ユーザーフレンドリーなインターフェイスとextenを使用しています

ねえ、忍者をコーディング!その日はどのようなコーディング関連のタスクを計画していますか?このブログにさらに飛び込む前に、コーディング関連のすべての問題について考えてほしいです。 終わり? - &#8217を見てみましょう

食品の準備を強化するAI まだ初期の使用中ですが、AIシステムは食品の準備にますます使用されています。 AI駆動型のロボットは、ハンバーガーの製造、SAの組み立てなど、食品の準備タスクを自動化するためにキッチンで使用されています

導入 Python関数における変数の名前空間、スコープ、および動作を理解することは、効率的に記述し、ランタイムエラーや例外を回避するために重要です。この記事では、さまざまなASPを掘り下げます

導入 鮮やかな絵画や彫刻に囲まれたアートギャラリーを歩くことを想像してください。さて、各ピースに質問をして意味のある答えを得ることができたらどうでしょうか?あなたは尋ねるかもしれません、「あなたはどんな話を言っていますか?

製品のケイデンスを継続して、今月MediaTekは、新しいKompanio UltraやDimenity 9400を含む一連の発表を行いました。これらの製品は、スマートフォン用のチップを含むMediaTekのビジネスのより伝統的な部分を埋めます

#1 GoogleはAgent2Agentを起動しました 物語:月曜日の朝です。 AI駆動のリクルーターとして、あなたはより賢く、難しくありません。携帯電話の会社のダッシュボードにログインします。それはあなたに3つの重要な役割が調達され、吟味され、予定されていることを伝えます


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)
