検索
ホームページテクノロジー周辺機器AI普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速します

AIGC モデルをより適切に、より速く、より安価にトレーニングおよび微調整する方法が、AIGC の商用化とアプリケーションの爆発的な増加における最大の課題となっています。

Colossal-AI は、大規模モデルの民主化における専門技術の蓄積に基づいており、オープンソースで完全な Stable Diffusion 事前トレーニングとパーソナライズされた微調整ソリューションにより、事前トレーニング時間の短縮と経済的コストが削減されます。 6.5 倍、パーソナライズされた微調整ハードウェアのコストは 7 倍削減されます。微調整作業のプロセスはパソコンの RTX 2070/3050 上で迅速に完了することができ、Stable Diffusion などの AIGC モデルが手の届くところにあります。

オープンソース アドレス:

https://github.com/hpcaitech/ColossalAI

ホット AIGC トラックと高コスト

AIGC (AI 生成)コンテンツ(人工知能生成コンテンツ)は現在のAI分野で最も注目されているトピックの1つであり、特にStable Diffusion、Midjourney、NovelAI、DALL-Eなどに代表されるテキスト生成画像のクロスモーダルアプリケーションの出現により、AIGCが注目を集めています。サークルから抜け出して、広く注目を集めましょう。

普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速します

安定拡散は画像を生成します

AIGC は業界の大量の需要を刺激して以来、次の波の重要な方向性の 1 つとみなされてきました。 AIGC に基づく新しい技術革命とキラー アプリケーションが、テキスト、オーディオ、画像とビデオ、ゲーム、メタバース、その他の技術シナリオに登場することが広く期待されています。関連するシナリオでの AIGC の商用化の成功と、数兆ドル規模の潜在的な市場により、関連するスタートアップ企業が資本の寵児となりました。たとえば、Stability AI、Jasper などは、わずか 1 ~ 2 年で数億ドルの資金調達を受けています。設立以来ユニコーンに昇格してきた獣たちの行列。

普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速します

AI モデルの規模とパフォーマンスは同時に成長しています

しかし、高いハードウェア要件とトレーニング コストが AIGC 業界の急速な発展を依然として深刻に妨げています。 AIGC アプリケーションの優れたパフォーマンスは、多くの場合、GPT-3 や安定拡散などの大規模モデルに基づいて構築され、特定の下流タスクやアプリケーション向けに微調整されています。人気の Stable Diffusion を例に挙げると、その背後にある Stability AI は最近確立されたものですが、4,000 以上の NVIDIA A100 GPU クラスターを維持し、この目的のために 5,000 万米ドル以上の運用コストを費やしています。 v1 バージョンのモデルのみ このトレーニングには 150,000 A100 GPU 時間が必要です。

拡散モデル

拡散モデル (拡散モデル) のアイデアは、2015 年の論文「非平衡熱力学を使用した深層教師なし学習」で初めて提案され、2020 年の論文「ノイズ除去拡散確率モデル」によって推進されました。 (DDPM) 新たな高みに到達し、DALL-E 2、Imagen、拡散モデルに基づく安定拡散は、敵対的生成ネットワーク (GAN)、可変差分オートエンコーダー (VAE)、自己回帰モデル (AR) をはるかに超える成果を達成しました。生成タスク、および従来の生成モデルのその他の効果。

拡散モデルは、画像にガウスノイズを徐々に加えてランダムノイズにする順拡散処理と逆生成処理の2つの処理から構成されます。ノイズの除去: このプロセスでは、画像が生成されるまで複数の U-Net を使用してランダム ノイズが徐々に除去されますが、これも拡散モデルのトレーニングの一部です。

普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速します

潜在拡散モデル

従来のエンドツーエンドの深層学習モデルと比較して、拡散モデルのトレーニング プロセスは間違いなくより複雑です。例として安定拡散を示します。拡散モデル自体には、テキスト プロンプトを入力するための Frozen CLIP Textcoder と、高解像度の画像を潜在空間 (Latent Space) に圧縮して各タイム ステップでの損失を計算する Autoencoder もあります。これにより、グラフィックス メモリのオーバーヘッドとトレーニング ソリューションの計算速度に大きな課題が生じます。

低コスト - トレーニング前の高速化と低リソースの微調整

トレーニング前の最適化

トレーニング前の場合、一般に、より大きなバッチサイズ、トレーニング速度も速くなり、拡散モデルも同様です。 Colossal-AI は、ZeRO、Gemini、チャンク ベースのメモリ管理戦略と Flash アテンション モジュールを通じてクロス アテンション計算を最適化します。これにより、拡散モデル トレーニングのメモリ オーバーヘッドが大幅に削減され、ユーザーは 10G メモリを搭載したコンシューマ グレードのグラフィックス カードを使用できるようになります。 A100 などの専用グラフィックス カードで拡散モデルをトレーニングできます。これにより、最大シングルカード バッチ サイズ 256 でのトレーニングを直接サポートできます。stable-diffusion-v1-1 と比較すると、FP32 DistributedDataParallel (DDP) トレーニングは6.5倍の加速が可能です。これは、数百万ドルかかるトレーニング コストを 6.5 分の 1 に削減できることを意味し、AIGC 業界のトレーニング コストと参入障壁を大幅に引き下げることができます。

普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速します

Colossal-AI の安定普及への加速

パーソナライズされた微調整最適化

LAION-5B データセットは事前トレーニングで使用されるため、 Stable Diffusion には、合計 5,850 億の画像とテキストのペアがあり、240 TB のストレージ スペースが必要です。モデルの複雑さと組み合わせると、完全な事前トレーニングのコストが非常に高いことは明らかです。Stable Diffusion の安定性チームは、50 ドル以上を費やしました。 4,000 個の A100 GPU を導入するには 100 万ドル。ほとんどの AIGC プレーヤーにとってより現実的なオプションは、パーソナライゼーションの下流タスクを微調整するためにオープンソースの事前トレーニング済みモデルの重みを使用することです。

ただし、他の既存のオープンソース微調整ソリューションで使用されているトレーニング並列処理手法は主に DDP であるため、トレーニング プロセス中に大量のビデオ メモリが使用されます。微調整でも少なくとも RTX の使用が必要です。 3090 または 4090、最高級の消費者向けグラフィックス カード。同時に、現段階のオープンソース トレーニング フレームワークの多くは完全なトレーニング構成とスクリプトを提供していないため、ユーザーは面倒な完了とデバッグに余分な時間を費やす必要があります。

他のソリューションとは異なり、Colossal-AI は、オープンソースの完全なトレーニング構成パラメーターとトレーニング スクリプトを同時に提供する最初のソリューションであり、ユーザーはいつでも新しい下流タスク用のセグメンテーション モデルの最新バージョンをトレーニングできます。 、より柔軟で幅広いアプリケーションを使用します。また、Colossal-AI はビデオ メモリの最適化やその他のテクノロジを導入しているため、通常のパーソナル コンピュータの 1 枚のコンシューマー グレードのグラフィックス カード (GeForce RTX 2070/3050 8GB など) だけで微調整タスクのプロセスを迅速に完了できます。 RTX 3090 または 4090 を使用すると、ハードウェア コストを約 7 倍節約できるため、安定拡散などの AIGC モデルを使用するしきい値とコストが大幅に削減され、ユーザーは既存の重み推論に制限されなくなり、パーソナライズされたカスタマイズ サービスを迅速かつ簡単に完了できるようになります。 。速度に依存しないタスクの場合は、低コストのハードディスク容量を使用してグラフィックス メモリの消費量を削減する Colossal-AI NVMe をさらに使用できます。

普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速します

Colossal-AI のメモリ削減による安定拡散

ZeRO Gemini を支える最適化技術

Colossal-AI は、メモリの冗長性を排除するゼロ冗長オプティマイザー (ZeRO) メソッドの使用をサポートしています。従来のデータ並列戦略と比較して、計算の粒度や通信効率を犠牲にすることなく、メモリの使用効率を大幅に向上させることができます。

Colossal-AI は、ZeRO のパフォーマンスをさらに向上させるために Chunk メカニズムを導入しました。操作の順序で連続するパラメータのセットはチャンク (チャンクはメモリ空間の連続したセクション) に格納され、各チャンクは同じサイズです。メモリを編成するチャンク方式により、PCI-e と GPU-GPU 間のネットワーク帯域幅を効率的に利用し、通信数を削減し、メモリの断片化の可能性を回避できます。

普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速しますチャンク メカニズム

さらに、Colossal-AI のヘテロジニアス メモリ スペース マネージャー Gemini は、オプティマイザー状態を GPU から CPU にオフロードして、GPU メモリ使用量を節約することをサポートしています。 。 GPU メモリと CPU メモリ (CPU DRAM または NVMe SSD メモリで構成される) を同時に使用して、単一の GPU メモリの壁の制限を突破し、トレーニング可能なモデルの規模をさらに拡大できます。

普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速しますZeRO Gemini を通じてハードウェアのモデル能力を向上させる

Flash Attendance

LDM (潜在拡散モデル)合格 マルチモーダル トレーニングを実現するためにモデル アーキテクチャにクロス アテンション (クロス アテンション レイヤー) を導入すると、拡散モデルはクラス条件、テキストから画像、レイアウトから画像をより柔軟にサポートできるようになります。ただし、クロスアテンション レイヤーでは、元の拡散モデルの CNN レイヤーと比較して計算オーバーヘッドが追加され、トレーニング コストが大幅に増加します。

普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速します Flash アテンション メカニズムを導入することで、Colossal-AI はアテンションの速度を 104% 向上させ、エンドツーエンド トレーニングのピーク ビデオ メモリを 23% 削減することに成功しました。 。フラッシュ アテンションは、ロング シーケンス アテンションの高速化バージョンです。フラット化は、GPU 高帯域幅メモリ (HBM) 間のメモリ読み取り/書き込みの数を減らすために使用されます。フラッシュ アテンションは、ブロック スパース アテンションの近似アテンション アルゴリズムも設計します。既存のアテンションよりも高速です。おおよその注意方法。

その他の最適化

Colossal-AI は、FP16 やアクティベーション チェックポイントなどの一般的な最適化テクノロジも統合します。たとえば、チェックポイントのアクティブ化は、メモリと計算を交換することによって機能します。これは、逆方向計算のために計算グラフ全体のすべての中間アクティベーションを保存することを回避し、チェックポイント部分に中間アクティベーションを保存せず、代わりにバックワード パスで再計算することで、ビデオ メモリをさらに削減します。一方、FP16 は、精度に影響を与えることなく、元の 32 ビット浮動小数点数演算を 16 ビットに変換し、ビデオ メモリの使用量を削減し、計算効率を向上させます。

すぐに始めましょう

一般的な PyTorch オープン ソース プロジェクトとは異なり、現在のホット安定版の拡散は PyTorch Lightning に基づいて構築されています。 PyTorch Lightning は、人気の深層学習フレームワーク PyTorch にシンプルで使いやすく、柔軟で効率的な高レベルのインターフェイスを提供し、大多数の AI 研究者にシンプルで使いやすい高レベルの抽象化を提供します。学習実験が読みやすく再現しやすく、GitHub で公開されています。20.5k スターが収穫されました。

PyTorch Lightning の招待により、Colossal-AI は PyTorch Lightning の公式大規模モデル ソリューションとして統合されました。 2 つの強力な組み合わせのおかげで、AI 研究者は拡散モデルをより効率的にトレーニングして使用できるようになりました。安定した拡散モデルのトレーニングを例にとると、ほんの少量のコードですぐに開始できます。

from colossalai.nn.optimizer import HybridAdam
from lightning.pytorch import trainer
class MyDiffuser(LightningModule):
...
def configure_sharded_model(self) -> None:
# create your model here
self.model = construct_diffuser_model(...)
...

def configure_optimizers(self):
# use the specified optimizer
optimizer = HybridAdam(self.model.parameters(), self.lr)
...
model = MyDiffuser()
trainer = Trainer(accelerator="gpu", devices=1, precision=16, strategy="colossalai")
trainer.fit(model)

Colossal-AI と PyTorch Lightning は、OPT や HuggingFace などの人気モデルやコミュニティに対して優れたサポートと最適化も提供します。

低コストの微調整

Colossal-AI 少ないリソースで短期間のトレーニングで独自のスタイルのモデルを生成したいというユーザーのニーズに応えるために、Colossal-AI は、オープンソースの HuggingFace に基づく安定拡散モデルの重みを微調整する機能。ユーザーは、データローダーを変更して独自の微調整されたデータセットをロードし、トレーニング前の重みを読み取るだけで済みます。パラメータ設定の yaml ファイルを変更してトレーニング スクリプトを実行するだけで、パーソナル コンピュータ上で独自のパーソナライズされたモデルを微調整することができます。

model:
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
your_sub_module_config:
target: your.model.import.path
params:
from_pretrained: 'your_file_path/unet/diffusion_pytorch_model.bin'
...
lightning:
trainer:
strategy:
target: pytorch_lightning.strategies.ColossalAIStrategy
params:
...
python main.py --logdir /your_log_dir -t -b config/train_colossalai.yaml

高速推論

Colossal-AI は、ネイティブの安定した拡散推論パイプラインもサポートしています。トレーニングまたは微調整が完了したら、ディフューザー ライブラリを直接呼び出して、保存されたモデル パラメーターをロードするだけです。推論には他の変更が必要ないため、新しいユーザーは推論プロセスに慣れることが容易になり、元のフレームワークの使用に慣れているユーザーはすぐに使い始めることができます。

from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"your_ColoDiffusion_checkpoint_path"
).to("cuda")
image = pipe('your prompt', num_inference_steps=50)["sample"][0]
image.save('file path')

普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速します

上記の推論プロセスによって生成された成果物

One More Thing

Diffusion に代表される AIGC トレーニング最適化における上記のブレークスルーモデル時代の一般的な深層学習システムである大規模な Colossal-AI に基づいており、効率的な多次元自動並列処理、異種メモリ管理、大規模な最適化ライブラリを通じて、AI 大規模モデルのトレーニングと推論の効率的かつ迅速な展開を実現します。適応型タスクスケジューリングなどを実現し、AI大規模モデルの適用コストを削減します。 Colossal-AIはオープンソース以来、GitHubやPapers With Codeのホットリストで何度も世界1位にランクされており、数万のスターを擁する多くのスターオープンソースプロジェクトとともに国内外で注目を集めています。国際的な専門家による厳格な審査の後、Colossal-AI は、SC、AAAI、PPoPP などの主要な国際 AI および HPC カンファレンスの公式チュートリアルとして選ばれました。

普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速します

Colossal-AI アプリケーション: より優れたタンパク質構造予測ソリューション

Colossal-AI 関連ソリューションは、自動運転、クラウド コンピューティング、小売業での使用に成功しています。 、医療、チップ、その他の業界の有名メーカーによって実装され、広く賞賛されています。たとえば、生物医学産業のタンパク質構造予測モデル AlphaFold では、Colossal-AI に基づく最適化ソリューション FastFold が、単一の GPU で推定できる最大アミノ酸配列長を 10,000 まで超えることに成功し、タンパク質の 99.9999% をカバーしました。ラップトップ コンピュータのみ。民生用グラフィック カードはタンパク質の 90% を分解できます。これにより、トレーニングと推論のプロセス全体を並行してさらに加速することができ、多くの新薬研究開発企業の開発プロセスの短縮と研究開発コストの削減に貢献してきました。

オープンソース アドレス:

https://github.com/hpcaitech/ColossalAI

以上が普及の事前トレーニングのコストは 6.5 倍、微調整ハードウェアのコストは 7 倍に削減されます。 Colossal-AI の完全なオープンソース ソリューションは、低コストで AIGC 業界の実装を加速しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
ai合并图层的快捷键是什么ai合并图层的快捷键是什么Jan 07, 2021 am 10:59 AM

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西怎么办ai橡皮擦擦不掉东西怎么办Jan 13, 2021 am 10:23 AM

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开Apr 07, 2023 pm 02:54 PM

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式吗ai可以转成psd格式吗Feb 22, 2023 pm 05:56 PM

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑Apr 04, 2023 am 11:55 AM

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

ai顶部属性栏不见了怎么办ai顶部属性栏不见了怎么办Feb 22, 2023 pm 05:27 PM

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程Mar 31, 2023 pm 10:38 PM

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场

ai移动不了东西了怎么办ai移动不了东西了怎么办Mar 07, 2023 am 10:03 AM

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。