検索
ホームページテクノロジー周辺機器AI機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

この記事では、トレーニングと検証で考えられる状況をまとめ、これらのチャートがどのような情報を提供できるかを紹介します。

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

簡単なコードから始めましょう。次のコードは、基本的なトレーニング プロセスのフレームワークを確立します。

from sklearn.model_selection import train_test_split<br>from sklearn.datasets import make_classification<br>import torch<br>from torch.utils.data import Dataset, DataLoader<br>import torch.optim as torch_optim<br>import torch.nn as nn<br>import torch.nn.functional as F<br>import numpy as np<br>import matplotlib.pyplot as pltclass MyCustomDataset(Dataset):<br>def __init__(self, X, Y, scale=False):<br>self.X = torch.from_numpy(X.astype(np.float32))<br>self.y = torch.from_numpy(Y.astype(np.int64))<br><br>def __len__(self):<br>return len(self.y)<br><br>def __getitem__(self, idx):<br>return self.X[idx], self.y[idx]def get_optimizer(model, lr=0.001, wd=0.0):<br>parameters = filter(lambda p: p.requires_grad, model.parameters())<br>optim = torch_optim.Adam(parameters, lr=lr, weight_decay=wd)<br>return optimdef train_model(model, optim, train_dl, loss_func):<br># Ensure the model is in Training mode<br>model.train()<br>total = 0<br>sum_loss = 0<br>for x, y in train_dl:<br>batch = y.shape[0]<br># Train the model for this batch worth of data<br>logits = model(x)<br># Run the loss function. We will decide what this will be when we call our Training Loop<br>loss = loss_func(logits, y)<br># The next 3 lines do all the PyTorch back propagation goodness<br>optim.zero_grad()<br>loss.backward()<br>optim.step()<br># Keep a running check of our total number of samples in this epoch<br>total += batch<br># And keep a running total of our loss<br>sum_loss += batch*(loss.item())<br>return sum_loss/total<br>def train_loop(model, train_dl, valid_dl, epochs, loss_func, lr=0.1, wd=0):<br>optim = get_optimizer(model, lr=lr, wd=wd)<br>train_loss_list = []<br>val_loss_list = []<br>acc_list = []<br>for i in range(epochs): <br>loss = train_model(model, optim, train_dl, loss_func)<br># After training this epoch, keep a list of progress of <br># the loss of each epoch <br>train_loss_list.append(loss)<br>val, acc = val_loss(model, valid_dl, loss_func)<br># Likewise for the validation loss and accuracy<br>val_loss_list.append(val)<br>acc_list.append(acc)<br>print("training loss: %.5f valid loss: %.5f accuracy: %.5f" % (loss, val, acc))<br><br>return train_loss_list, val_loss_list, acc_list<br>def val_loss(model, valid_dl, loss_func):<br># Put the model into evaluation mode, not training mode<br>model.eval()<br>total = 0<br>sum_loss = 0<br>correct = 0<br>batch_count = 0<br>for x, y in valid_dl:<br>batch_count += 1<br>current_batch_size = y.shape[0]<br>logits = model(x)<br>loss = loss_func(logits, y)<br>sum_loss += current_batch_size*(loss.item())<br>total += current_batch_size<br># All of the code above is the same, in essence, to<br># Training, so see the comments there<br># Find out which of the returned predictions is the loudest<br># of them all, and that's our prediction(s)<br>preds = logits.sigmoid().argmax(1)<br># See if our predictions are right<br>correct += (preds == y).float().mean().item()<br>return sum_loss/total, correct/batch_count<br>def view_results(train_loss_list, val_loss_list, acc_list):<br>plt.rcParams["figure.figsize"] = (15, 5)<br>plt.figure()<br>epochs = np.arange(0, len(train_loss_list)) plt.subplot(1, 2, 1)<br>plt.plot(epochs-0.5, train_loss_list)<br>plt.plot(epochs, val_loss_list)<br>plt.title('model loss')<br>plt.ylabel('loss')<br>plt.xlabel('epoch')<br>plt.legend(['train', 'val', 'acc'], loc = 'upper left')<br><br>plt.subplot(1, 2, 2)<br>plt.plot(acc_list)<br>plt.title('accuracy')<br>plt.ylabel('accuracy')<br>plt.xlabel('epoch')<br>plt.legend(['train', 'val', 'acc'], loc = 'upper left')<br>plt.show()<br><br>def get_data_train_and_show(model, batch_size=128, n_samples=10000, n_classes=2, n_features=30, val_size=0.2, epochs=20, lr=0.1, wd=0, break_it=False):<br># We'll make a fictitious dataset, assuming all relevant<br># EDA / Feature Engineering has been done and this is our <br># resultant data<br>X, y = make_classification(n_samples=n_samples, n_classes=n_classes, n_features=n_features, n_informative=n_features, n_redundant=0, random_state=1972)<br><br>if break_it: # Specifically mess up the data<br>X = np.random.rand(n_samples,n_features)<br>X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=val_size, random_state=1972) train_ds = MyCustomDataset(X_train, y_train)<br>valid_ds = MyCustomDataset(X_val, y_val)<br>train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True)<br>valid_dl = DataLoader(valid_ds, batch_size=batch_size, shuffle=True) train_loss_list, val_loss_list, acc_list = train_loop(model, train_dl, valid_dl, epochs=epochs, loss_func=F.cross_entropy, lr=lr, wd=wd)<br>view_results(train_loss_list, val_loss_list, acc_list)

上記のコードは非常にシンプルで、データの取得、トレーニング、検証の基本的なプロセスです。

シナリオ 1 - モデルは学習しているように見えますが、検証や精度のパフォーマンスが不十分です

ハイパーパラメーターに関係なく、モデルの Train 損失はゆっくりと減少しますが、Val 損失は減少せず、その精度は示されませんそれは何かを学ぶことだということ。

たとえば、この場合、バイナリ分類の精度は約 50% にとどまります。

class Scenario_1_Model_1(nn.Module):<br>def __init__(self, in_features=30, out_features=2):<br>super().__init__()<br>self.lin1 = nn.Linear(in_features, out_features)<br>def forward(self, x):<br>x = self.lin1(x)<br>return x<br>get_data_train_and_show(Scenario_1_Model_1(), lr=0.001, break_it=True)

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

データには「学習」を可能にするのに十分な情報がありません。また、トレーニング データにはモデルが「学習」を可能にするのに十分な情報が含まれていない可能性があります。

この場合 (コード内のトレーニング データはランダム データです)、実質的なものは何も学習できないことを意味します。

データには、学習するのに十分な情報が含まれている必要があります。 EDA と特徴エンジニアリングが鍵となります。モデルは、存在しないものを作り上げるのではなく、学習できることを学習します。

シナリオ 2 - トレーニング、検証、および精度曲線はすべて非常に不安定です

たとえば、次のコード: lr=0.1, bs=128

class Scenario_2_Model_1(nn.Module):<br>def __init__(self, in_features=30, out_features=2):<br>super().__init__()<br>self.lin1 = nn.Linear(in_features, out_features)<br>def forward(self, x):<br>x = self.lin1(x)<br>return x<br>get_data_train_and_show(Scenario_2_Model_1(), lr=0.1)

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

「学習率が高すぎる」または「バッチが小さすぎる」 学習率を 0.1 から 0.001 に下げてみることができます。これは、学習率が「跳ね返る」のではなく、滑らかに減少することを意味します。

get_data_train_and_show(Scenario_1_Model_1(), lr=0.001)

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

学習率を下げるだけでなく、バ​​ッチサイズを増やすと学習もスムーズになります。

get_data_train_and_show(Scenario_1_Model_1(), lr=0.001, batch_size=256)

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

シナリオ 3 - トレーニング損失はゼロに近く、精度は良好に見えますが、検証は低下せず、上昇もします

class Scenario_3_Model_1(nn.Module):<br>def __init__(self, in_features=30, out_features=2):<br>super().__init__()<br>self.lin1 = nn.Linear(in_features, 50)<br>self.lin2 = nn.Linear(50, 150)<br>self.lin3 = nn.Linear(150, 50)<br>self.lin4 = nn.Linear(50, out_features)<br>def forward(self, x):<br>x = F.relu(self.lin1(x))<br>x = F.relu(self.lin2(x))<br>x = F.relu(self.lin3(x))<br>x = self.lin4(x)<br>return x<br>get_data_train_and_show(Scenario_3_Model_1(), lr=0.001)

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

これは間違いなく過学習です。トレーニング損失は低く、精度は高いですが、検証損失とトレーニング損失はますます大きくなっており、どちらも古典的な過学習指標です。

根本的に言えば、モデルの学習能力が強すぎます。トレーニング データをよく覚えているため、新しいデータに一般化することもできません。

最初に試せるのは、モデルの複雑さを軽減することです。

class Scenario_3_Model_2(nn.Module):<br>def __init__(self, in_features=30, out_features=2):<br>super().__init__()<br>self.lin1 = nn.Linear(in_features, 50)<br>self.lin2 = nn.Linear(50, out_features)<br>def forward(self, x):<br>x = F.relu(self.lin1(x))<br>x = self.lin2(x)<br>return x<br>get_data_train_and_show(Scenario_3_Model_2(), lr=0.001)

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

これにより改善され、L2 重み減衰正則化を導入してさらに改善することができます (浅いモデルの場合)。

get_data_train_and_show(Scenario_3_Model_2(), lr=0.001, wd=0.02)

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

モデルの深さとサイズを維持したい場合は、ドロップアウト (より深いモデルの場合) を使用してみてください。

class Scenario_3_Model_3(nn.Module):<br>def __init__(self, in_features=30, out_features=2):<br>super().__init__()<br>self.lin1 = nn.Linear(in_features, 50)<br>self.lin2 = nn.Linear(50, 150)<br>self.lin3 = nn.Linear(150, 50)<br>self.lin4 = nn.Linear(50, out_features)<br>self.drops = nn.Dropout(0.4)<br>def forward(self, x):<br>x = F.relu(self.lin1(x))<br>x = self.drops(x)<br>x = F.relu(self.lin2(x))<br>x = self.drops(x)<br>x = F.relu(self.lin3(x))<br>x = self.drops(x)<br>x = self.lin4(x)<br>return x<br>get_data_train_and_show(Scenario_3_Model_3(), lr=0.001)

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

场景 4 - 训练和验证表现良好,但准确度没有提高

lr = 0.001,bs = 128(默认,分类类别= 5

class Scenario_4_Model_1(nn.Module):<br>def __init__(self, in_features=30, out_features=2):<br>super().__init__()<br>self.lin1 = nn.Linear(in_features, 2)<br>self.lin2 = nn.Linear(2, out_features)<br>def forward(self, x):<br>x = F.relu(self.lin1(x))<br>x = self.lin2(x)<br>return x<br>get_data_train_and_show(Scenario_4_Model_1(out_features=5), lr=0.001, n_classes=5)

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

没有足够的学习能力:模型中的其中一层的参数少于模型可能输出中的类。 在这种情况下,当有 5 个可能的输出类时,中间的参数只有 2 个。

这意味着模型会丢失信息,因为它不得不通过一个较小的层来填充它,因此一旦层的参数再次扩大,就很难恢复这些信息。

所以需要记录层的参数永远不要小于模型的输出大小。

class Scenario_4_Model_2(nn.Module):<br>def __init__(self, in_features=30, out_features=2):<br>super().__init__()<br>self.lin1 = nn.Linear(in_features, 50)<br>self.lin2 = nn.Linear(50, out_features)<br>def forward(self, x):<br>x = F.relu(self.lin1(x))<br>x = self.lin2(x)<br>return x<br>get_data_train_and_show(Scenario_4_Model_2(out_features=5), lr=0.001, n_classes=5)

機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?

总结

以上就是一些常见的训练、验证时的曲线的示例,希望你在遇到相同情况时可以快速定位并且改进。


以上が機械学習において、トレーニングと検証のメトリクス グラフから何がわかるでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
革新を調理する:人工知能がフードサービスを変革する方法革新を調理する:人工知能がフードサービスを変革する方法Apr 12, 2025 pm 12:09 PM

食品の準備を強化するAI まだ初期の使用中ですが、AIシステムは食品の準備にますます使用されています。 AI駆動型のロボットは、ハンバーガーの製造、SAの組み立てなど、食品の準備タスクを自動化するためにキッチンで使用されています

Pythonネームスペースと可変スコープに関する包括的なガイドPythonネームスペースと可変スコープに関する包括的なガイドApr 12, 2025 pm 12:00 PM

導入 Python関数における変数の名前空間、スコープ、および動作を理解することは、効率的に記述し、ランタイムエラーや例外を回避するために重要です。この記事では、さまざまなASPを掘り下げます

ビジョン言語モデル(VLM)の包括的なガイドビジョン言語モデル(VLM)の包括的なガイドApr 12, 2025 am 11:58 AM

導入 鮮やかな絵画や彫刻に囲まれたアートギャラリーを歩くことを想像してください。さて、各ピースに質問をして意味のある答えを得ることができたらどうでしょうか?あなたは尋ねるかもしれません、「あなたはどんな話を言っていますか?

MediaTekは、Kompanio UltraとDimenity 9400でプレミアムラインナップをブーストしますMediaTekは、Kompanio UltraとDimenity 9400でプレミアムラインナップをブーストしますApr 12, 2025 am 11:52 AM

製品のケイデンスを継続して、今月MediaTekは、新しいKompanio UltraやDimenity 9400を含む一連の発表を行いました。これらの製品は、スマートフォン用のチップを含むMediaTekのビジネスのより伝統的な部分を埋めます

今週のAIで:Walmartがファッションのトレンドを設定する前に設定します今週のAIで:Walmartがファッションのトレンドを設定する前に設定しますApr 12, 2025 am 11:51 AM

#1 GoogleはAgent2Agentを起動しました 物語:月曜日の朝です。 AI駆動のリクルーターとして、あなたはより賢く、難しくありません。携帯電話の会社のダッシュボードにログインします。それはあなたに3つの重要な役割が調達され、吟味され、予定されていることを伝えます

生成AIは精神障害に会います生成AIは精神障害に会いますApr 12, 2025 am 11:50 AM

私はあなたがそうであるに違いないと思います。 私たちは皆、精神障害がさまざまな心理学の用語を混ぜ合わせ、しばしば理解できないか完全に無意味であることが多い、さまざまなおしゃべりで構成されていることを知っているようです。 FOを吐き出すために必要なことはすべてです

プロトタイプ:科学者は紙をプラスチックに変えますプロトタイプ:科学者は紙をプラスチックに変えますApr 12, 2025 am 11:49 AM

今週公開された新しい研究によると、2022年に製造されたプラスチックの9.5%のみがリサイクル材料から作られていました。一方、プラスチックは埋め立て地や生態系に積み上げられ続けています。 しかし、助けが近づいています。エンジンのチーム

AIアナリストの台頭:これがAI革命で最も重要な仕事になる理由AIアナリストの台頭:これがAI革命で最も重要な仕事になる理由Apr 12, 2025 am 11:41 AM

主要なエンタープライズ分析プラットフォームAlteryxのCEOであるAndy Macmillanとの私の最近の会話は、AI革命におけるこの重要でありながら過小評価されている役割を強調しました。 MacMillanが説明するように、生のビジネスデータとAI-Ready情報のギャップ

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン