ホームページ >バックエンド開発 >Python チュートリアル >Python をシルクのようにスムーズに使用するための古典的なテクニックのまとめ

Python をシルクのようにスムーズに使用するための古典的なテクニックのまとめ

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB転載
2022-03-25 19:21:572542ブラウズ

この記事は、python に関する関連知識を提供します。主に、関数マッピングにマップを使用する、交差を見つけるためにセットを使用するなど、Python のパフォーマンスを向上させるためのいくつかのヒントを要約して紹介します。それがみんなに役立つことを願っています。

Python をシルクのようにスムーズに使用するための古典的なテクニックのまとめ

推奨学習: Python 学習チュートリアル

プログラムの実行時間を測定する方法

Python についてプログラムの実行時間を正確に測定する方法は簡単そうに見えますが、実際には非常に複雑です。プログラムの実行時間は、オペレーティング システム、Python のバージョン、関連ハードウェア (CPU パフォーマンス、メモリ読み取り、書き込み速度)など。同じコンピュータ上で同じバージョンの言語を実行する場合、上記の要因は確かですが、プログラムのスリープ時間は依然として変化し、コンピュータ上で実行されている他のプログラムも実験を妨害するため、厳密に言えば、これは「実験」です。繰り返すことはできません。」

私がタイミングについて学んだ最も代表的な 2 つのライブラリは、time と timeit です。

このうち、time ライブラリには time()、perf_counter()、process_time() という 3 つの関数があり、秒単位でタイミングを計ることができ、サフィックス _ns を付けるとナノ秒単位のタイミングを意味します (Python3 以降)。 7の始まり)。これより前には Clock() 関数がありましたが、Python 3.3 以降は削除されました。

  • time() は精度が比較的高くなく、システムの影響を受けるため、大規模なプログラムの日時やタイミングを表現するのに適しています。
  • perf_counter() は、小規模なプログラムのテストに適しており、sleep() 時間を計算します。
  • process_time() は、小規模なプログラムのテストに適しており、sleep() 時間はカウントされません。

Timeit には、タイム ライブラリに比べて 2 つの利点があります。

  • timeit は、オペレーティング システムと Python のバージョンに基づいて最適なタイマーを選択します。
  • timeit は、タイマー期間中、ガベージ コレクションを一時的に無効にします。

timeit.timeit(stmt='pass', setup='pass', timer=,number=1000000, globals=None) パラメータの説明:

  • stmt= 「pass」: タイミングを必要とするステートメントまたは関数。
  • setup=‘pass’: stmt を実行する前に実行されるコード。通常、これはいくつかのモジュールをインポートするか、いくつかの必要な変数を宣言するために使用されます。
  • timer=: タイマー関数、デフォルトは time.perf_counter() です。
  • number=1000000: タイミング ステートメントを実行する回数。デフォルトは 100 万回です。
  • globals=None: コードを実行するための名前空間を指定します。

この記事のすべてのタイミングでは timeit メソッドが使用されており、デフォルトの実行回数は 100 万回です。

なぜ 100 万回も実行する必要があるのでしょうか?テストプログラムは非常に短いため、何度も実行しないと違いがまったく分かりません。

1. 関数マッピングには map() を使用します

Exp1: 文字列配列内の小文字を大文字に変換します。

测试数组为 oldlist = ['life', 'is', 'short', 'i', 'choose', 'python']。
  • メソッド 1
newlist = []for word in oldlist:
    newlist.append(word.upper())
  • メソッド 2
list(map(str.upper, oldlist))

メソッド 1 には 0.5267724000000005 秒かかり、メソッド 2 には 0.5267724000000005 秒かかります■ 時間 0.41462569999999843 秒、パフォーマンスは 21.29% 向上

2. set() を使用して交差部分を見つけます

Exp2: 2 つのリストの交差部分を見つけます。

测试数组:a = [1,2,3,4,5],b = [2,4,6,8,10]。
  • 方法 1
overlaps = []for x in a:
    for y in b:
        if x == y:
            overlaps.append(x)
  • 方法 2
list(set(a) & set(b))

方法 1 には 0.9507264000000006 秒かかり、方法 2 には時間がかかります0.6148200999999993 秒、パフォーマンスは 35.33% 向上しました。

set() の構文について: |、&、- はそれぞれ和集合、交差集合、および差分集合を表します。

3. sort() またはsorted() を使用して並べ替える

シーケンスはさまざまな方法で並べ替えることができますが、実際には、並べ替えアルゴリズムを自分で作成してもメリットはありません。組み込みのsort()またはsorted()メソッドで十分であり、パラメータキーを使用してさまざまな関数を実装できるため、非常に柔軟です。 2 つの違いは、sort() メソッドはリスト内でのみ定義されるのに対し、sorted() はすべての反復可能なシーケンスに対して有効なグローバル メソッドであることです。

Exp3: クイック sort メソッドと sort() メソッドを使用して、同じリストを並べ替えます。

测试数组:lists = [2,1,4,3,0]。
  • メソッド 1
def quick_sort(lists,i,j):
    if i >= j:
        return list
    pivot = lists[i]
    low = i
    high = j    while i = pivot:
            j -= 1
        lists[i]=lists[j]
        while i 
  • メソッド 2
lists.sort()

メソッド 1 には 2.4796975000000003 秒かかり、メソッド 2 には 2.4796975000000003 秒かかります■ 時間は 0.05551999999999424 秒で、パフォーマンスは 97.76% 向上しました。

ちなみに、sorted() メソッドには 0.1339823999987857s かかります。

sort() はリスト固有の並べ替えメソッドとして依然として非常に強力であることがわかります。sorted() は前者よりも少し遅いですが、「選り好みしない」ため、より優れています。すべての反復可能なシーケンスに使用できます。

拡張機能:sort()またはsorted()メソッドのキーの定義方法

1.lambdaで定義

#学生:(姓名,成绩,年龄)
students = [('john', 'A', 15),('jane', 'B', 12),('dave', 'B', 10)]students.sort(key = lambda student: student[0]) #根据姓名排序sorted(students, key = lambda student: student[0])

2.で定義Operator

import operator

students = [('john', 'A', 15),('jane', 'B', 12),('dave', 'B', 10)]students.sort(key=operator.itemgetter(0))sorted(students, key = operator.itemgetter(1, 0)) #先对成绩排序,再对姓名排序

operator の itemgetter() は通常の配列の並べ替えに適しており、attrgetter() はオブジェクト配列の並べ替えに適しています

3。cmp_to_key() によって定義されます。最も柔軟な

import functools

def cmp(a,b):
    if a[1] != b[1]:
        return -1 if a[1]  b[2] else 1 #成绩姓名都相同,按照年龄降序排序 

students = [('john', 'A', 15),('john', 'A', 14),('jane', 'B', 12),('dave', 'B', 10)]sorted(students, key = functools.cmp_to_key(cmp))

4. collections.Counter() を使用してカウント

Exp4: 文字列内に各文字が出現する回数をカウントします。

テスト配列: 文=「人生は短い、私は Python を選びます」。

  • 方法一
counts = {}for char in sentence:
    counts[char] = counts.get(char, 0) + 1
  • 方法二
from collections import CounterCounter(sentence)

方法一耗时 2.8105250000000055s,方法二耗时 1.6317423000000062s,性能提升 41.94% 

5.使用列表推导

列表推导(list comprehension)短小精悍。在小代码片段中,可能没有太大的区别。但是在大型开发中,它可以节省一些时间。

 Exp5:对列表中的奇数求平方,偶数不变。

测试数组:oldlist = range(10)。

  • 方法一
newlist = []for x in oldlist:
    if x % 2 == 1:
        newlist.append(x**2)
  • 方法二
[x**2 for x in oldlist if x%2 == 1]

方法一耗时 1.5342976000000021s,方法二耗时 1.4181957999999923s,性能提升 7.57% 

6.使用 join() 连接字符串

大多数人都习惯使用+来连接字符串。但其实,这种方法非常低效。因为,+操作在每一步中都会创建一个新字符串并复制旧字符串。更好的方法是用 join() 来连接字符串。关于字符串的其他操作,也尽量使用内置函数,如isalpha()、isdigit()、startswith()、endswith()等。

 Exp6:将字符串列表中的元素连接起来。

测试数组:oldlist = [‘life’, ‘is’, ‘short’, ‘i’, ‘choose’, ‘python’]。

  • 方法一
sentence = ""for word in oldlist:
    sentence += word
  • 方法二
"".join(oldlist)

方法一耗时 0.27489080000000854s,方法二耗时 0.08166570000000206s,性能提升 70.29% 

join还有一个非常舒服的点,就是它可以指定连接的分隔符,举个例子

oldlist = ['life', 'is', 'short', 'i', 'choose', 'python']sentence = "//".join(oldlist)print(sentence)

life//is//short//i//choose//python

7.使用x, y = y, x交换变量

 Exp6:交换x,y的值。

测试数据:x, y = 100, 200。

  • 方法一
temp = x
x = y
y = temp
  • 方法二
x, y = y, x

方法一耗时 0.027853900000010867s,方法二耗时 0.02398730000000171s,性能提升 13.88% 

8.使用while 1取代while True

在不知道确切的循环次数时,常规方法是使用while True进行无限循环,在代码块中判断是否满足循环终止条件。虽然这样做没有任何问题,但while 1的执行速度比while True更快。因为它是一种数值转换,可以更快地生成输出。

 Exp8:分别用while 1和while True循环 100 次。

  • 方法一
i = 0while True:
    i += 1
    if i > 100:
        break
  • 方法二
i = 0while 1:
    i += 1
    if i > 100:
        break

方法一耗时 3.679268300000004s,方法二耗时 3.607847499999991s,性能提升1.94% 

9.使用装饰器缓存

将文件存储在高速缓存中有助于快速恢复功能。Python 支持装饰器缓存,该缓存在内存中维护特定类型的缓存,以实现最佳软件驱动速度。我们使用lru_cache装饰器来为斐波那契函数提供缓存功能,在使用fibonacci递归函数时,存在大量的重复计算,例如fibonacci(1)、fibonacci(2)就运行了很多次。而在使用了lru_cache后,所有的重复计算只会执行一次,从而大大提高程序的执行效率。

 Exp9:求斐波那契数列。

测试数据:fibonacci(7)。

  • 方法一
def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    return fibonacci(n - 1) + fibonacci(n-2)
  • 方法二
import functools

@functools.lru_cache(maxsize=128)def fibonacci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    return fibonacci(n - 1) + fibonacci(n-2)

方法一耗时 3.955014900000009s,方法二耗时 0.05077979999998661s,性能提升 98.72% 

注意事项:

  • 缓存是按照参数作为键,也就说在参数不变时,被lru_cache装饰的函数只会执行一次。
  • 所有参数必须可哈希,例如list不能作为被lru_cache装饰的函数的参数。
import functools
 
@functools.lru_cache(maxsize=100)def demo(a, b):
    print('我被执行了')
    return a + bif __name__ == '__main__':
    demo(1, 2)
    demo(1, 2)

我被执行了(执行了两次demo(1, 2),却只输出一次)

from functools import lru_cache
 
@lru_cache(maxsize=100)def list_sum(nums: list):
    return sum(nums)if __name__ == '__main__':
    list_sum([1, 2, 3, 4, 5])

TypeError: unhashable type: ‘list’

functools.lru_cache(maxsize=128, typed=False)的两个可选参数:

  • maxsize代表缓存的内存占用值,超过这个值之后,就的结果就会被释放,然后将新的计算结果进行缓存,其值应当设为 2 的幂。

  • typed若为True,则会把不同的参数类型得到的结果分开保存。

10.减少点运算符(.)的使用

点运算符(.)用来访问对象的属性或方法,这会引起程序使用__getattribute__()和__getattr__()进行字典查找,从而带来不必要的开销。尤其注意,在循环当中,更要减少点运算符的使用,应该将它移到循环外处理。

这启发我们应该尽量使用from … import …这种方式来导包,而不是在需要使用某方法时通过点运算符来获取。其实不光是点运算符,其他很多不必要的运算我们都尽量移到循环外处理。

 Exp10:将字符串数组中的小写字母转为大写字母。

测试数组为 oldlist = [‘life’, ‘is’, ‘short’, ‘i’, ‘choose’, ‘python’]。

  • 方法一
newlist = []for word in oldlist:
    newlist.append(str.upper(word))
  • 方法二
newlist = []upper = str.upperfor word in oldlist:
    newlist.append(upper(word))

方法一耗时 0.7235491999999795s,方法二耗时 0.5475435999999831s,性能提升 24.33% 

11.使用for循环取代while循环

当我们知道具体要循环多少次时,使用for循环比使用while循环更好。

 Exp12:使用for和while分别循环 100 次。

  • 方法一
i = 0while i 
  • 方法二
for _ in range(100):
    pass

方法一耗时 3.894683299999997s,方法二耗时 1.0198077999999953s,性能提升73.82% 

12.使用Numba.jit加速计算

Numba 可以将 Python 函数编译码为机器码执行,大大提高代码执行速度,甚至可以接近 C 或 FORTRAN 的速度。它能和 Numpy 配合使用,在 for 循环中或存在大量计算时能显著地提高执行效率。

Exp12:求从 1 加到 100 的和。

  • 方法一
def my_sum(n):
    x = 0
    for i in range(1, n+1):
        x += i    return x
  • 方法二
from numba import jit

@jit(nopython=True) def numba_sum(n):
    x = 0
    for i in range(1, n+1):
        x += i    return x

方法一耗时 3.7199997000000167s,方法二耗时 0.23769430000001535s,性能提升 93.61% 

13.使用Numpy矢量化数组

矢量化是 NumPy 中的一种强大功能,可以将操作表达为在整个数组上而不是在各个元素上发生。这种用数组表达式替换显式循环的做法通常称为矢量化。

在 Python 中循环数组或任何数据结构时,会涉及很多开销。NumPy 中的向量化操作将内部循环委托给高度优化的 C 和 Fortran 函数,从而使 Python 代码更加快速。

 Exp13:两个长度相同的序列逐元素相乘。

测试数组:a = [1,2,3,4,5], b = [2,4,6,8,10]

  • 方法一
[a[i]*b[i] for i in range(len(a))]
  • 方法二
import numpy as np
a = np.array([1,2,3,4,5])b = np.array([2,4,6,8,10])a*b

方法一耗时 0.6706845000000214s,方法二耗时 0.3070132000000001s,性能提升 54.22% 

14.使用in检查列表成员

若要检查列表中是否包含某成员,通常使用in关键字更快。

 Exp14:检查列表中是否包含某成员。

测试数组:lists = [‘life’, ‘is’, ‘short’, ‘i’, ‘choose’, ‘python’]

  • 方法一
def check_member(target, lists):
    for member in lists:
        if member == target:
            return True    return False
  • 方法二
if target in lists:
    pass

方法一耗时 0.16038449999999216s,方法二耗时 0.04139250000000061s,性能提升 74.19% 

15.使用itertools库迭代

itertools是用来操作迭代器的一个模块,其函数主要可以分为三类:无限迭代器、有限迭代器、组合迭代器。

Exp15:返回列表的全排列。

测试数组:[“Alice”, “Bob”, “Carol”]

  • 方法一
def permutations(lst):
    if len(lst) == 1 or len(lst) == 0:
        return [lst]
    result = []
    for i in lst:
        temp_lst = lst[:]
        temp_lst.remove(i)
        temp = permutations(temp_lst)
        for j in temp:
            j.insert(0, i)
            result.append(j)
    return result
  • 方法二
import itertools
itertools.permutations(["Alice", "Bob", "Carol"])

方法一耗时 3.867292899999484s,方法二耗时 0.3875405000007959s,性能提升 89.98% 

结语

根据上面的测试数据,我绘制了下面这张实验结果图,可以更加直观的看出不同方法带来的性能差异。

Python をシルクのようにスムーズに使用するための古典的なテクニックのまとめ
从图中可以看出,大部分的技巧所带来的性能增幅还是比较可观的,但也有少部分技巧的增幅较小(例如编号5、7、8,其中,第 8 条的两种方法几乎没有差异)。

总结下来,我觉得其实就是下面这两条原则:

1.尽量使用内置库函数

内置库函数由专业的开发人员编写并经过了多次测试,很多库函数的底层是用C语言开发的。因此,这些函数总体来说是非常高效的(比如sort()、join()等),自己编写的方法很难超越它们,还不如省省功夫,不要重复造轮子了,何况你造的轮子可能更差。所以,如果函数库中已经存在该函数,就直接拿来用。

2.尽量使用优秀的第三方库

有很多优秀的第三方库,它们的底层可能是用 C 和 Fortran 来实现的,像这样的库用起来绝对不会吃亏,比如前文提到的 Numpy 和 Numba,它们带来的提升都是非常惊人的。类似这样的库还有很多,比如Cython、PyPy等,这里我只是抛砖引玉。

其实加快 Python 代码执行速度的方法还有很多,比如避免使用全局变量、使用最新版本、使用合适的数据结构、利用if条件的惰性等等,我这里就不一一例举了。这些方法都需要我们亲身去实践才会有深刻的感受和理解,但最根本的方法就是保持我们对编程的热情和对最佳实践的追求,这才是我们能不断突破自我、勇攀高峰的不竭动力源泉!

推奨学習: Python 学習チュートリアル

以上がPython をシルクのようにスムーズに使用するための古典的なテクニックのまとめの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事はcsdn.netで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。