recherche
Maisondéveloppement back-endTutoriel Python使用scrapy实现爬网站例子和实现网络爬虫(蜘蛛)的步骤

代码如下:


#!/usr/bin/env python
# -*- coding: utf-8 -*-
from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from scrapy.selector import Selector

from cnbeta.items import CnbetaItem
class CBSpider(CrawlSpider):
    name = 'cnbeta'
    allowed_domains = ['cnbeta.com']
    start_urls = ['http://www.bitsCN.com']

    rules = (
        Rule(SgmlLinkExtractor(allow=('/articles/.*\.htm', )),
             callback='parse_page', follow=True),
    )

    def parse_page(self, response):
        item = CnbetaItem()
        sel = Selector(response)
        item['title'] = sel.xpath('//title/text()').extract()
        item['url'] = response.url
        return item



实现蜘蛛爬虫步骤

1.实例初级目标:从一个网站的列表页抓取文章列表,然后存入数据库中,数据库包括文章标题、链接、时间

首先生成一个项目:scrapy startproject fjsen
先定义下items,打开items.py:

我们开始建模的项目,我们想抓取的标题,地址和时间的网站,我们定义域为这三个属性。这样做,我们编辑items.py,发现在开放目录目录。我们的项目看起来像这样:

代码如下:


from scrapy.item import Item, Field
class FjsenItem(Item):
    # define the fields for your item here like:
    # name = Field()
    title=Field()
    link=Field()
    addtime=Field()

第二步:定义一个spider,就是爬行蜘蛛(注意在工程的spiders文件夹下),他们确定一个初步清单的网址下载,如何跟随链接,以及如何分析这些内容的页面中提取项目(我们要抓取的网站是http://www.fjsen.com/j/node_94962.htm 这列表的所有十页的链接和时间)。
新建一个fjsen_spider.py,内容如下:

代码如下:


#-*- coding: utf-8 -*-
from scrapy.spider import BaseSpider
from scrapy.selector import HtmlXPathSelector
from fjsen.items import FjsenItem
class FjsenSpider(BaseSpider):
    name="fjsen"
    allowed_domains=["fjsen.com"]
    start_urls=['http://www.fjsen.com/j/node_94962_'+str(x)+'.htm' for x in range(2,11)]+['http://www.fjsen.com/j/node_94962.htm']
    def parse(self,response):
        hxs=HtmlXPathSelector(response)
        sites=hxs.select('//ul/li')
        items=[]
        for site in sites:
            item=FjsenItem()
            item['title']=site.select('a/text()').extract()
            item['link'] = site.select('a/@href').extract()
            item['addtime']=site.select('span/text()').extract()
            items.append(item)
        return items                 

name:是确定蜘蛛的名称。它必须是独特的,就是说,你不能设置相同的名称不同的蜘蛛。
allowed_domains:这个很明显,就是允许的域名,或者说爬虫所允许抓取的范围仅限这个列表里面的域名。
start_urls:是一个网址列表,蜘蛛会开始爬。所以,第一页将被列在这里下载。随后的网址将生成先后从数据中包含的起始网址。我这里直接是列出十个列表页。
parse():是蜘蛛的一个方法,当每一个开始下载的url返回的Response对象都会执行该函数。
这里面,我抓取每一个列表页中的

    下的
  • 下的数据,包括title,链接,还有时间,并插入到一个列表中


    第三步,将抓取到的数据存入数据库中,这里就得在pipelines.py这个文件里面修改了

    代码如下:


    # Define your item pipelines here
    #
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    from os import path
    from scrapy import signals
    from scrapy.xlib.pydispatch import dispatcher
    class FjsenPipeline(object):

        def __init__(self):
            self.conn=None
            dispatcher.connect(self.initialize,signals.engine_started)
            dispatcher.connect(self.finalize,signals.engine_stopped)
        def process_item(self,item,spider):
            self.conn.execute('insert into fjsen values(?,?,?,?)',(None,item['title'][0],'http://www.bitsCN.com/'+item['link'][0],item['addtime'][0]))
            return item
        def initialize(self):
            if path.exists(self.filename):
                self.conn=sqlite3.connect(self.filename)
            else:
                self.conn=self.create_table(self.filename)
        def finalize(self):
            if self.conn is not None:
                self.conn.commit()
                self.conn.close()
                self.conn=None
        def create_table(self,filename):
            conn=sqlite3.connect(filename)
            conn.execute("""create table fjsen(id integer primary key autoincrement,title text,link text,addtime text)""")
            conn.commit()
            return conn

    这里我暂时不解释,先继续,让这个蜘蛛跑起来再说。

    第四步:修改setting.py这个文件:将下面这句话加进去

    代码如下:


    ITEM_PIPELINES=['fjsen.pipelines.FjsenPipeline']

    接着,跑起来吧,执行:

    代码如下:


    scrapy crawl fjsen


    就会在目前下生成一个data.sqlite的数据库文件,所有抓取到的数据都会存在这里。
Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Python: jeux, GUIS, et plusPython: jeux, GUIS, et plusApr 13, 2025 am 12:14 AM

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python vs C: applications et cas d'utilisation comparésPython vs C: applications et cas d'utilisation comparésApr 12, 2025 am 12:01 AM

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Le plan Python de 2 heures: une approche réalisteLe plan Python de 2 heures: une approche réalisteApr 11, 2025 am 12:04 AM

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python: Explorer ses applications principalesPython: Explorer ses applications principalesApr 10, 2025 am 09:41 AM

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Combien de python pouvez-vous apprendre en 2 heures?Combien de python pouvez-vous apprendre en 2 heures?Apr 09, 2025 pm 04:33 PM

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures?Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures?Apr 02, 2025 am 07:18 AM

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu?Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu?Apr 02, 2025 am 07:15 AM

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Que dois-je faire si le module '__builtin__' n'est pas trouvé lors du chargement du fichier de cornichon dans Python 3.6?Que dois-je faire si le module '__builtin__' n'est pas trouvé lors du chargement du fichier de cornichon dans Python 3.6?Apr 02, 2025 am 07:12 AM

Chargement des fichiers de cornichons dans Python 3.6 Rapport de l'environnement Erreur: modulenotFoundError: NomoduLenamed ...

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Version Mac de WebStorm

Version Mac de WebStorm

Outils de développement JavaScript utiles

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Dreamweaver Mac

Dreamweaver Mac

Outils de développement Web visuel

mPDF

mPDF

mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) ​​et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire