Maison  >  Article  >  développement back-end  >  Tutoriel d'utilisation d'Anaconda (image et texte)

Tutoriel d'utilisation d'Anaconda (image et texte)

藏色散人
藏色散人original
2019-03-16 13:37:5083219parcourir

Anaconda est une plateforme de science des données et d'apprentissage automatique pour les langages de programmation Python et R. Il est conçu pour rendre le processus de création et de distribution de projets simple, stable et reproductible sur tous les systèmes, et est disponible sur Linux, Windows et OSX.

Tutoriel d'utilisation d'Anaconda (image et texte)

Anaconda est une plate-forme basée sur Python qui gère les principaux packages de science des données, notamment panda, scikit-learn, SciPy, NumPy et la plate-forme d'apprentissage automatique de Google, TensorFlow. Il est fourni avec conda (un outil d'installation de type pip), le navigateur Anaconda (pour l'expérience GUI) et spyder (pour l'IDE).

Ce tutoriel vous présentera quelques bases d'Anaconda, conda et spyder du langage de programmation Python et vous présentera les concepts dont vous avez besoin pour commencer à créer vos propres projets. (Recommandé : Tutoriel Python)

Connaissance de base de conda

Conda est un outil de gestion et d'environnement de packages Anaconda et est le cœur d'Anaconda. Cela ressemble beaucoup à pip, sauf qu'il est conçu pour la gestion des packages Python, C et R. Conda gère également les environnements virtuels d'une manière similaire à virtualenv, dont j'ai parlé ici.

Confirmer l'installation

La première étape consiste à confirmer l'installation et la version sur votre système. La commande ci-dessous vérifiera si Anaconda est installé et imprimera la version sur le terminal.

$ conda --version

Vous devriez voir des résultats similaires à ceux ci-dessous. J'ai actuellement la version 4.4.7 installée.

$ conda --version
conda 4.4.7

Version de mise à jour

Conda peut être mis à jour à l'aide du paramètre de mise à jour de conda, comme indiqué ci-dessous.

$ conda update conda

Cette commande sera mise à jour vers la dernière version de conda.

Proceed ([y]/n)? y

Downloading and Extracting Packages
conda 4.4.8: ########################################################### | 100%
openssl 1.0.2n: ######################################################## | 100%
certifi 2018.1.18: ##################################################### | 100%
ca-certificates 2017.08.26: ############################################ | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

En exécutant à nouveau le paramètre version, nous constatons que ma version a été mise à jour vers la 4.4.8, qui est la dernière version de l'outil.

$ conda --version
conda 4.4.8

Créer un nouvel environnement

Pour créer un nouvel environnement virtuel, exécutez la série de commandes suivante.

$ conda create -n tutorialConda python=3
$ Proceed ([y]/n)? y

Ci-dessous, vous pouvez voir les packages installés dans le nouvel environnement.

Downloading and Extracting Packages
certifi 2018.1.18: ##################################################### | 100%
sqlite 3.22.0: ######################################################### | 100%
wheel 0.30.0: ########################################################## | 100%
tk 8.6.7: ############################################################## | 100%
readline 7.0: ########################################################## | 100%
ncurses 6.0: ########################################################### | 100%
libcxxabi 4.0.1: ####################################################### | 100%
python 3.6.4: ########################################################## | 100%
libffi 3.2.1: ########################################################## | 100%
setuptools 38.4.0: ##################################################### | 100%
libedit 3.1: ########################################################### | 100%
xz 5.2.3: ############################################################## | 100%
zlib 1.2.11: ########################################################### | 100%
pip 9.0.1: ############################################################# | 100%
libcxx 4.0.1: ########################################################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use:
# > source activate tutorialConda
#
# To deactivate an active environment, use:
# > source deactivate
#

Activer

Très similaire à virtualenv, vous devez activer l'environnement nouvellement créé. La commande suivante activera l'environnement sous Linux.

source activate tutorialConda
Bradleys-Mini:~ BradleyPatton$ source activate tutorialConda
(tutorialConda) Bradleys-Mini:~ BradleyPatton$

Packages d'installation

La commande conda list répertoriera les packages actuellement installés dans le projet. Vous pouvez ajouter des packages supplémentaires et leurs dépendances à l'aide de la commande install.

$ conda list
# packages in environment at /Users/BradleyPatton/anaconda/envs/tutorialConda:
#
# Name Version Build Channel
ca-certificates 2017.08.26 ha1e5d58_0
certifi 2018.1.18 py36_0
libcxx 4.0.1 h579ed51_0
libcxxabi 4.0.1 hebd6815_0
libedit 3.1 hb4e282d_0
libffi 3.2.1 h475c297_4
ncurses 6.0 hd04f020_2
openssl 1.0.2n hdbc3d79_0
pip 9.0.1 py36h1555ced_4
python 3.6.4 hc167b69_1
readline 7.0 hc1231fa_4
setuptools 38.4.0 py36_0
sqlite 3.22.0 h3efe00b_0
tk 8.6.7 h35a86e2_3
wheel 0.30.0 py36h5eb2c71_1
xz 5.2.3 h0278029_2
zlib 1.2.11 hf3cbc9b_2

Pour installer panda dans l'environnement actuel, vous devez exécuter la commande shell suivante.

$ conda install pandas

Il téléchargera et installera les packages et dépendances pertinents.

The following packages will be downloaded:

package | build
---------------------------|-----------------
libgfortran-3.0.1 | h93005f0_2 495 KB
pandas-0.22.0 | py36h0a44026_0 10.0 MB
numpy-1.14.0 | py36h8a80b8c_1 3.9 MB
python-dateutil-2.6.1 | py36h86d2abb_1 238 KB
mkl-2018.0.1 | hfbd8650_4 155.1 MB
pytz-2017.3 | py36hf0bf824_0 210 KB
six-1.11.0 | py36h0e22d5e_1 21 KB
intel-openmp-2018.0.0 | h8158457_8 493 KB
------------------------------------------------------------
Total: 170.3 MB

The following NEW packages will be INSTALLED:

intel-openmp: 2018.0.0-h8158457_8
libgfortran: 3.0.1-h93005f0_2
mkl: 2018.0.1-hfbd8650_4
numpy: 1.14.0-py36h8a80b8c_1
pandas: 0.22.0-py36h0a44026_0
python-dateutil: 2.6.1-py36h86d2abb_1
pytz: 2017.3-py36hf0bf824_0
six: 1.11.0-py36h0e22d5e_1

En exécutant à nouveau la commande list, nous pouvons voir que le nouveau package est installé dans l'environnement virtuel.

$ conda list
# packages in environment at /Users/BradleyPatton/anaconda/envs/tutorialConda:
#
# Name Version Build Channel
ca-certificates 2017.08.26 ha1e5d58_0
certifi 2018.1.18 py36_0
intel-openmp 2018.0.0 h8158457_8
libcxx 4.0.1 h579ed51_0
libcxxabi 4.0.1 hebd6815_0
libedit 3.1 hb4e282d_0
libffi 3.2.1 h475c297_4
libgfortran 3.0.1 h93005f0_2
mkl 2018.0.1 hfbd8650_4
ncurses 6.0 hd04f020_2
numpy 1.14.0 py36h8a80b8c_1
openssl 1.0.2n hdbc3d79_0
pandas 0.22.0 py36h0a44026_0
pip 9.0.1 py36h1555ced_4
python 3.6.4 hc167b69_1
python-dateutil 2.6.1 py36h86d2abb_1
pytz 2017.3 py36hf0bf824_0
readline 7.0 hc1231fa_4
setuptools 38.4.0 py36_0
six 1.11.0 py36h0e22d5e_1
sqlite 3.22.0 h3efe00b_0
tk 8.6.7 h35a86e2_3
wheel 0.30.0 py36h5eb2c71_1
xz 5.2.3 h0278029_2
zlib 1.2.11 hf3cbc9b_2

Pour les packages qui ne font pas partie du référentiel Anaconda, vous pouvez utiliser la commande pip typique. Étant donné que la plupart des utilisateurs de Python connaissent ces commandes, je n'en parlerai pas ici.

Anaconda Navigator

Anaconda comprend une application de navigation basée sur une interface graphique qui facilite le développement. Il comprend Spyder IDE et Jupyter Notebook en tant que projets préinstallés. Cela vous permet de démarrer rapidement un projet à partir de l'environnement de bureau GUI.

Tutoriel dutilisation dAnaconda (image et texte)

Afin de commencer à travailler à partir de l'environnement nouvellement créé dans le Navigateur, nous devons sélectionner notre environnement sous la barre d'outils de gauche.

Tutoriel dutilisation dAnaconda (image et texte)

Ensuite, nous devons installer les outils que nous souhaitons utiliser. Pour moi, c'est l'IDE Spyder. C'est là que j'effectue la plupart de mon travail en science des données, et pour moi, c'est un IDE Python productif. Cliquez simplement sur le bouton d'installation sur la vignette du dock de Spyder. Le navigateur fera le reste.

Tutoriel dutilisation dAnaconda (image et texte)

Après l'installation, vous pouvez ouvrir l'IDE à partir de la même vignette du dock. Cela lancera Spyder depuis votre environnement de bureau.

Tutoriel dutilisation dAnaconda (image et texte)

spyder

Tutoriel dutilisation dAnaconda (image et texte)

spyder est l'EDI par défaut d'Anaconda pour les projets standard et de science des données. puissant. Spyder IDE dispose d'un bloc-notes IPython intégré, d'une fenêtre d'éditeur de code et d'une fenêtre de console.

Tutoriel dutilisation dAnaconda (image et texte)

Spyder comprend également des fonctionnalités de débogage standard et un explorateur de variables pour vous aider lorsque les choses ne se passent pas exactement comme prévu.

Conclusion

anaconda est un excellent environnement pour la science des données et l'apprentissage automatique en Python. Il est livré avec un ensemble de progiciels soigneusement sélectionnés, conçus pour fonctionner ensemble pour former une plate-forme de science des données puissante, stable et reproductible. Cela permet aux développeurs de distribuer leur contenu et de garantir les mêmes résultats sur différentes machines et systèmes d'exploitation. Il est livré avec des outils intégrés pour vous faciliter la vie, comme un navigateur qui vous permet de créer facilement des projets et de changer d'environnement. C'est mon premier choix pour développer des algorithmes et créer des projets d'analyse financière. Je me retrouve même à l'utiliser sur la plupart des projets Python car je connais l'environnement. Si vous souhaitez commencer à apprendre Python et la science des données, Anaconda est un excellent choix.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn