


Ce tutoriel vous guide à travers la construction d'un système de génération augmentée (RAG) de récupération à l'aide de Python et Openai. Le chiffon améliore les réponses de l'IA en récupérant des informations pertinentes à partir de vos documents avant de générer une réponse - essentiellement, en laissant à l'avance «l'étude» de l'IA
ce que vous apprendrez:
- Construire un système de chiffon à partir de zéro.
- Préparation et traitement des documents pour le chiffon.
- en utilisant des incorporations Openai.
- Création d'un système de récupération de base.
- intégrer avec l'API OpenAI.
Structure du projet:
<code>rag-project/ │ ├── src/ │ ├── __init__.py │ ├── document_loader.py │ ├── text_processor.py │ ├── embeddings_manager.py │ ├── retrieval_system.py │ └── rag_system.py │ ├── data/ │ └── documents/ │ ├── requirements.txt ├── test.py ├── README.md └── .env</code>
Étape 1: Configuration de l'environnement:
- Créez un environnement virtuel:
python -m venv venv
(sur Windows:venvScriptsactivate
) - Activez-le:
source venv/bin/activate
- Installer les packages:
pip install openai python-dotenv numpy pandas
- Créer
requirements.txt
:
<code>openai==1.12.0 python-dotenv==1.0.0 numpy==1.24.3 pandas==2.1.0</code>
- Configurer
.env
:
<code>OPENAI_API_KEY=your_api_key_here</code>
Étape 2: Chargement du document (src/document_loader.py
):
import os from typing import List class DocumentLoader: def __init__(self, documents_path: str): self.documents_path = documents_path def load_documents(self) -> List[str]: documents = [] for filename in os.listdir(self.documents_path): if filename.endswith('.txt'): with open(os.path.join(self.documents_path, filename), 'r') as file: documents.append(file.read()) return documents
Étape 3: Traitement du texte (src/text_processor.py
):
from typing import List class TextProcessor: def __init__(self, chunk_size: int = 1000): self.chunk_size = chunk_size def split_into_chunks(self, text: str) -> List[str]: words = text.split() chunks = [] current_chunk = [] current_size = 0 for word in words: if current_size + len(word) > self.chunk_size: chunks.append(' '.join(current_chunk)) current_chunk = [word] current_size = len(word) else: current_chunk.append(word) current_size += len(word) + 1 if current_chunk: chunks.append(' '.join(current_chunk)) return chunks
Étape 4: Création d'intégration (src/embeddings_manager.py
):
from typing import List import openai import numpy as np class EmbeddingsManager: def __init__(self, api_key: str): openai.api_key = api_key def create_embeddings(self, texts: List[str]) -> List[np.ndarray]: embeddings = [] for text in texts: response = openai.embeddings.create( model="text-embedding-ada-002", input=text ) embeddings.append(np.array(response.data[0].embedding)) return embeddings
Étape 5: Système de récupération (src/retrieval_system.py
):
import numpy as np from typing import List, Tuple class RetrievalSystem: def __init__(self, chunks: List[str], embeddings: List[np.ndarray]): self.chunks = chunks self.embeddings = embeddings def find_similar_chunks(self, query_embedding: np.ndarray, top_k: int = 3) -> List[Tuple[str, float]]: similarities = [] for i, embedding in enumerate(self.embeddings): similarity = np.dot(query_embedding, embedding) / ( np.linalg.norm(query_embedding) * np.linalg.norm(embedding) ) similarities.append((self.chunks[i], similarity)) return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_k]
Étape 6: Intégration ouverte (src/rag_system.py
):
import os from dotenv import load_dotenv from typing import List import openai from .document_loader import DocumentLoader from .text_processor import TextProcessor from .embeddings_manager import EmbeddingsManager from .retrieval_system import RetrievalSystem class RAGSystem: def __init__(self): load_dotenv() self.api_key = os.getenv('OPENAI_API_KEY') self.loader = DocumentLoader('data/documents') self.processor = TextProcessor() self.embeddings_manager = EmbeddingsManager(self.api_key) # Initialize system self.initialize_system() def initialize_system(self): # Load and process documents documents = self.loader.load_documents() self.chunks = [] for doc in documents: self.chunks.extend(self.processor.split_into_chunks(doc)) # Create embeddings self.embeddings = self.embeddings_manager.create_embeddings(self.chunks) # Initialize retrieval system self.retrieval_system = RetrievalSystem(self.chunks, self.embeddings) def answer_question(self, question: str) -> str: # Get question embedding question_embedding = self.embeddings_manager.create_embeddings([question])[0] # Get relevant chunks relevant_chunks = self.retrieval_system.find_similar_chunks(question_embedding) # Prepare context context = "\n".join([chunk[0] for chunk in relevant_chunks]) # Create prompt prompt = f"""Context: {context}\n\nQuestion: {question}\n\nAnswer:""" # Get response from OpenAI response = openai.chat.completions.create( model="gpt-4-turbo-preview", messages=[ {"role": "system", "content": "You are a helpful assistant. Use the provided context to answer the question."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content
Étape 7: utilisation du système (test.py
):
Placer l'échantillon .txt
Documents dans data/documents
. Ensuite, exécutez test.py
:
# test.py from src.rag_system import RAGSystem # Initialize the RAG system rag = RAGSystem() # Ask a question question = "What was the answer to the guardian’s riddle, and how did it help Kai?" #Replace with your question based on your documents answer = rag.answer_question(question) print(answer)
Conclusion:
Cela fournit un système de chiffon fondamental. Les améliorations futures pourraient inclure un seur amélioré, une mise en cache de mise en place, une gestion des erreurs, une ingénierie rapide raffinée et l'intégration de la base de données vectorielle. N'oubliez pas de gérer votre clé API OpenAI en toute sécurité et de surveiller l'utilisation.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP

VSCode Windows 64 bits Télécharger
Un éditeur IDE gratuit et puissant lancé par Microsoft

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP