recherche
Maisondéveloppement back-endTutoriel PythonAnalyse des outils d'orchestration de données : Airflow, Dagster, Flyte

Confrontation sur l'orchestration des données : Apache Airflow, Dagster et Flyte

Les workflows de données modernes exigent une orchestration robuste. Apache Airflow, Dagster et Flyte sont des choix populaires, chacun avec des atouts et des philosophies distinctes. Cette comparaison, éclairée par une expérience réelle avec un pipeline de données météorologiques, vous aidera à choisir le bon outil.

Aperçu du projet

Cette analyse découle d'une expérience pratique de l'utilisation d'Airflow, Dagster et Flyte dans un projet de pipeline de données météorologiques. L'objectif était de comparer leurs fonctionnalités et d'identifier leurs arguments de vente uniques.

Apache Airflow

Originé chez Airbnb en 2014, Airflow est un orchestrateur mature basé sur Python avec une interface Web conviviale. Son passage au rang de projet Apache de haut niveau en 2019 consolide sa position. Airflow excelle dans l'automatisation de tâches complexes, garantissant une exécution séquentielle. Dans le projet météo, il a parfaitement géré la récupération, le traitement et le stockage des données.

Exemple de DAG de flux d'air :

# Dag Instance
@dag(
    dag_id="weather_dag",
    schedule_interval="0 0 * * *",  # Daily at midnight
    start_date=datetime.datetime(2025, 1, 19, tzinfo=IST),
    catchup=False,
    dagrun_timeout=datetime.timedelta(hours=24),
)
# Task Definitions
def weather_dag():
    @task()
    def create_tables():         
        create_table()  

    @task()
    def fetch_weather(city: str, date: str):         
        fetch_and_store_weather(city, date)  

    @task()
    def fetch_daily_weather(city: str):     
        fetch_day_average(city.title())  

    @task()
    def global_average(city: str):     
        fetch_global_average(city.title())  

# Task Dependencies
    create_task = create_tables()
    fetch_weather_task = fetch_weather("Alwar", "2025-01-19")
    fetch_daily_weather_task = fetch_daily_weather("Alwar")
    global_average_task = global_average("Alwar")
# Task Order
    create_task >> fetch_weather_task >> fetch_daily_weather_task >> global_average_task

weather_dag_instance = weather_dag()

L'interface utilisateur d'Airflow offre une surveillance et un suivi complets.

Data Orchestration Tool Analysis: Airflow, Dagster, Flyte

Dagster

Lancé par Elementl en 2019, Dagster propose un nouveau modèle de programmation centré sur les actifs. Contrairement aux approches axées sur les tâches, Dagster donne la priorité aux relations entre les actifs de données (ensembles de données) comme unités de calcul de base.

Exemple d'actif Dagster :

@asset(
        description='Table Creation for the Weather Data',
        metadata={
            'description': 'Creates databse tables needed for weather data.',
            'created_at': datetime.datetime.now().isoformat()
        }
)
def setup_database() -> None:
    create_table()

# ... (other assets defined similarly)

La conception centrée sur les actifs de Dagster favorise la transparence et simplifie le débogage. Son versioning intégré et ses instantanés d'actifs répondent aux défis de la gestion des pipelines en évolution. Dagster prend également en charge une approche traditionnelle basée sur les tâches utilisant @ops.

Data Orchestration Tool Analysis: Airflow, Dagster, Flyte

Data Orchestration Tool Analysis: Airflow, Dagster, Flyte

Flyte

Développé par Lyft et open source en 2020, Flyte est un orchestrateur de flux de travail natif de Kubernetes conçu à la fois pour l'apprentissage automatique et l'ingénierie des données. Son architecture conteneurisée permet une mise à l'échelle et une gestion efficaces des ressources. Flyte utilise des fonctions Python pour la définition des tâches, similaires à l'approche centrée sur les tâches d'Airflow.

Exemple de flux de travail Flyte :

@task()
def setup_database():  
    create_table()

# ... (other tasks defined similarly)

@workflow         #defining the workflow
def wf(city: str='Noida', date: str='2025-01-17') -> typing.Tuple[str, int]:
    # ... (task calls)

Flyte flytectl simplifie l'exécution et les tests locaux.

Comparaison

Feature Airflow Dagster Flyte
DAG Versioning Manual, challenging Built-in, asset-centric Built-in, versioned workflows
Scaling Can be challenging Excellent for large data Excellent, Kubernetes-native
ML Workflow Support Limited Good Excellent
Asset Management Task-focused Asset-centric, superior Task-focused

Conclusion

Le choix optimal dépend de vos besoins spécifiques. Dagster excelle dans la gestion des actifs et la gestion des versions, tandis que Flyte brille dans la mise à l'échelle et la prise en charge des flux de travail ML. Airflow reste une option solide pour les pipelines de données traditionnels plus simples. Évaluez soigneusement l'ampleur, l'orientation et les exigences futures de votre projet pour prendre la meilleure décision.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Python et temps: tirer le meilleur parti de votre temps d'étudePython et temps: tirer le meilleur parti de votre temps d'étudeApr 14, 2025 am 12:02 AM

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python: jeux, GUIS, et plusPython: jeux, GUIS, et plusApr 13, 2025 am 12:14 AM

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python vs C: applications et cas d'utilisation comparésPython vs C: applications et cas d'utilisation comparésApr 12, 2025 am 12:01 AM

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Le plan Python de 2 heures: une approche réalisteLe plan Python de 2 heures: une approche réalisteApr 11, 2025 am 12:04 AM

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python: Explorer ses applications principalesPython: Explorer ses applications principalesApr 10, 2025 am 09:41 AM

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Combien de python pouvez-vous apprendre en 2 heures?Combien de python pouvez-vous apprendre en 2 heures?Apr 09, 2025 pm 04:33 PM

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures?Comment enseigner les bases de la programmation novice en informatique dans le projet et les méthodes axées sur les problèmes dans les 10 heures?Apr 02, 2025 am 07:18 AM

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu?Comment éviter d'être détecté par le navigateur lors de l'utilisation de Fiddler partout pour la lecture de l'homme au milieu?Apr 02, 2025 am 07:15 AM

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Comment déverrouiller tout dans Myrise
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP

Navigateur d'examen sécurisé

Navigateur d'examen sécurisé

Safe Exam Browser est un environnement de navigation sécurisé permettant de passer des examens en ligne en toute sécurité. Ce logiciel transforme n'importe quel ordinateur en poste de travail sécurisé. Il contrôle l'accès à n'importe quel utilitaire et empêche les étudiants d'utiliser des ressources non autorisées.

Version crackée d'EditPlus en chinois

Version crackée d'EditPlus en chinois

Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel