


Quels sont les moyens les plus efficaces de mapper des fonctions sur des tableaux NumPy ?
Mappage de fonctions sur des tableaux NumPy
Introduction
Le mappage d'une fonction sur un tableau NumPy implique d'appliquer une fonction à chaque élément dans le tableau pour obtenir un nouveau tableau contenant les résultats. Bien que la méthode décrite dans la question utilisant la compréhension de liste et la conversion en tableau NumPy soit simple, ce n'est peut-être pas l'approche la plus efficace. Cet article explore diverses méthodes pour mapper efficacement des fonctions sur des tableaux NumPy.
Fonctions NumPy natives
Si la fonction que vous souhaitez appliquer est déjà une fonction NumPy vectorisée, telle que racine carrée ou logarithme, en utilisant Les fonctions natives de NumPy sont directement l'option la plus rapide.
import numpy as np x = np.array([1, 2, 3, 4, 5]) squares = np.square(x) # Fast and straightforward
Compréhension des tableaux et Map
Pour les fonctions personnalisées qui ne sont pas vectorisées dans NumPy, utiliser une compréhension de tableau est généralement plus efficace que d'utiliser une boucle traditionnelle :
import numpy as np def my_function(x): # Define your custom function x = np.array([1, 2, 3, 4, 5]) squares = np.array([my_function(xi) for xi in x]) # Reasonably efficient
La fonction map peut également être utilisée, même si elle est légèrement moins efficace que la compréhension de tableau :
import numpy as np def my_function(x): # Define your custom function x = np.array([1, 2, 3, 4, 5]) squares = np.array(list(map(my_function, x))) # Slightly less efficient
np.fromiter
Le La fonction np.fromiter est une autre option pour mapper les fonctions, en particulier dans les cas où la fonction génère un itérateur. Cependant, elle est légèrement moins efficace que la compréhension de tableau :
import numpy as np def my_function(x): # Define your custom function return iter([my_function(xi) for xi in x]) # Yields values as an iterator x = np.array([1, 2, 3, 4, 5]) squares = np.fromiter(my_function(x), x.dtype) # Less efficient, but works with iterators
Vectorisation
Dans certains cas, il est possible de vectoriser votre fonction personnalisée à l'aide du framework de vectorisation de NumPy. Cette approche implique la création d'une nouvelle fonction qui peut être appliquée élément par élément au tableau :
import numpy as np def my_function(x): # Define your custom function x = np.array([1, 2, 3, 4, 5]) my_vectorized_function = np.vectorize(my_function) squares = my_vectorized_function(x) # Most efficient, but may not always be possible
Considérations sur les performances
Le choix de la méthode dépend de facteurs tels que la taille du tableau, la complexité de la fonction et si NumPy fournit une version vectorisée de la fonction. Pour les petits tableaux et les fonctions simples, la compréhension des tableaux ou la carte peuvent suffire. Pour les tableaux plus grands ou les fonctions plus complexes, l'utilisation des fonctions natives NumPy ou de la vectorisation est recommandée pour une efficacité optimale.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux

Dreamweaver Mac
Outils de développement Web visuel

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

mPDF
mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

VSCode Windows 64 bits Télécharger
Un éditeur IDE gratuit et puissant lancé par Microsoft