recherche
Maisondéveloppement back-endTutoriel PythonComment les tableaux NumPy peuvent-ils être efficacement justifiés (décalés) ?

How Can NumPy Arrays Be Efficiently Justified (Shifted)?

Justification des tableaux NumPy

Problème :

L'optimisation du code pour déplacer le contenu dans une matrice est recherchée pour une utilisation dans une démo de jeu 2048. Plus précisément, des fonctions sont nécessaires pour déplacer les valeurs non nulles de la matrice vers la gauche, la droite, le haut ou le bas.

Solution utilisant NumPy :

Le code fourni propose une approche vectorisée inspirée de un autre article :

def justify(a, invalid_val=0, axis=1, side='left'):
    """
    Justifies a 2D array

    Parameters
    ----------
    A : ndarray
        Input array to be justified
    axis : int
        Axis along which justification is to be made
    side : str
        Direction of justification. It could be 'left', 'right', 'up', 'down'
        It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0.

    """

    if invalid_val is np.nan:
        mask = ~np.isnan(a)
    else:
        mask = a!=invalid_val
    justified_mask = np.sort(mask,axis=axis)
    if (side=='up') | (side=='left'):
        justified_mask = np.flip(justified_mask,axis=axis)
    out = np.full(a.shape, invalid_val) 
    if axis==1:
        out[justified_mask] = a[mask]
    else:
        out.T[justified_mask.T] = a.T[mask.T]
    return out

Exemples d'exécution :

In [473]: a # input array
Out[473]: 
array([[1, 0, 2, 0],
       [3, 0, 4, 0],
       [5, 0, 6, 0],
       [6, 7, 0, 8]])

In [474]: justify(a, axis=0, side='up')
Out[474]: 
array([[1, 7, 2, 8],
       [3, 0, 4, 0],
       [5, 0, 6, 0],
       [6, 0, 0, 0]])

In [475]: justify(a, axis=0, side='down')
Out[475]: 
array([[1, 0, 0, 0],
       [3, 0, 2, 0],
       [5, 0, 4, 0],
       [6, 7, 6, 8]])

In [476]: justify(a, axis=1, side='left')
Out[476]: 
array([[1, 2, 0, 0],
       [3, 4, 0, 0],
       [5, 6, 0, 0],
       [6, 7, 8, 0]])

In [477]: justify(a, axis=1, side='right')
Out[477]: 
array([[0, 0, 1, 2],
       [0, 0, 3, 4],
       [0, 0, 5, 6],
       [0, 6, 7, 8]])

Cas générique (ndarray):

Pour un tableau générique à n dimensions, le code peut être modifié comme suit :

def justify_nd(a, invalid_val, axis, side):    
    """
    Justify ndarray for the valid elements (that are not invalid_val).

    Parameters
    ----------
    A : ndarray
        Input array to be justified
    invalid_val : scalar
        invalid value
    axis : int
        Axis along which justification is to be made
    side : str
        Direction of justification. Must be 'front' or 'end'.
        So, with 'front', valid elements are pushed to the front and
        with 'end' valid elements are pushed to the end along specified axis.
    """
    
    pushax = lambda a: np.moveaxis(a, axis, -1)
    if invalid_val is np.nan:
        mask = ~np.isnan(a)
    else:
        mask = a!=invalid_val
    justified_mask = np.sort(mask,axis=axis)
    
    if side=='front':
        justified_mask = np.flip(justified_mask,axis=axis)
            
    out = np.full(a.shape, invalid_val)
    if (axis==-1) or (axis==a.ndim-1):
        out[justified_mask] = a[mask]
    else:
        pushax(out)[pushax(justified_mask)] = pushax(a)[pushax(mask)]
    return out

Exemples d'exécution (ndarray) :

In [87]: a
Out[87]: 
array([[[54, 57,  0, 77],
        [77,  0,  0, 31],
        [46,  0,  0, 98],
        [98, 22, 68, 75]],

       [[49,  0,  0, 98],
        [ 0, 47,  0, 87],
        [82, 19,  0, 90],
        [79, 89, 57, 74]],

       [[ 0,  0,  0,  0],
        [29,  0,  0, 49],
        [42, 75,  0, 67],
        [42, 41, 84, 33]],

       [[ 0,  0,  0, 38],
        [44, 10,  0,  0],
        [63,  0,  0,  0],
        [89, 14,  0,  0]]])

Vers 'devant', le long de l'axe =0 :

In [88]: justify_nd(a, invalid_val=0, axis=0, side='front')
Out[88]: 
array([[[54, 57,  0, 77],
        [77, 47,  0, 31],
        [46, 19,  0, 98],
        [98, 22, 68, 75]],

       [[49,  0,  0, 98],
        [29, 10,  0, 87],
        [82, 75,  0, 90],
        [79, 89, 57, 74]],

       [[ 0,  0,  0, 38],
        [44,  0,  0, 49],
        [42,  0,  0, 67],
        [42, 41, 84, 33]],

       [[ 0,  0,  0,  0],
        [ 0,  0,  0,  0],
        [63,  0,  0,  0],
        [89, 14,  0,  0]]])

Le long de l'axe=1 :

In [89]: justify_nd(a, invalid_val=0, axis=1, side='front')
Out[89]: 
array([[[54, 57, 68, 77],
        [77, 22,  0, 31],
        [46,  0,  0, 98],
        [98,  0,  0, 75]],

       [[49, 47, 57, 98],
        [82, 19,  0, 87],
        [79, 89,  0, 90],
        [ 0,  0,  0, 74]],

       [[29, 75, 84, 49],
        [42, 41,  0, 67],
        [42,  0,  0, 33],
        [ 0,  0,  0,  0]],

       [[44, 10,  0, 38],
        [63, 14,  0,  0],
        [89,  0,  0,  0],
        [ 0,  0,  0,  0]]])

Le long de l'axe=2 :

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texteComment utiliser Python pour trouver la distribution ZIPF d'un fichier texteMar 05, 2025 am 09:58 AM

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Comment utiliser la belle soupe pour analyser HTML?Comment utiliser la belle soupe pour analyser HTML?Mar 10, 2025 pm 06:54 PM

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Filtrage d'image en pythonFiltrage d'image en pythonMar 03, 2025 am 09:44 AM

Traiter avec des images bruyantes est un problème courant, en particulier avec des photos de téléphones portables ou de caméras basse résolution. Ce tutoriel explore les techniques de filtrage d'images dans Python à l'aide d'OpenCV pour résoudre ce problème. Filtrage d'image: un outil puissant Filtre d'image

Comment travailler avec des documents PDF à l'aide de PythonComment travailler avec des documents PDF à l'aide de PythonMar 02, 2025 am 09:54 AM

Les fichiers PDF sont populaires pour leur compatibilité multiplateforme, avec du contenu et de la mise en page cohérents sur les systèmes d'exploitation, les appareils de lecture et les logiciels. Cependant, contrairement aux fichiers de texte brut de traitement Python, les fichiers PDF sont des fichiers binaires avec des structures plus complexes et contiennent des éléments tels que des polices, des couleurs et des images. Heureusement, il n'est pas difficile de traiter les fichiers PDF avec les modules externes de Python. Cet article utilisera le module PYPDF2 pour montrer comment ouvrir un fichier PDF, imprimer une page et extraire du texte. Pour la création et l'édition des fichiers PDF, veuillez vous référer à un autre tutoriel de moi. Préparation Le noyau réside dans l'utilisation du module externe PYPDF2. Tout d'abord, l'installez en utilisant PIP: pip is p

Comment se cacher en utilisant Redis dans les applications DjangoComment se cacher en utilisant Redis dans les applications DjangoMar 02, 2025 am 10:10 AM

Ce tutoriel montre comment tirer parti de la mise en cache Redis pour augmenter les performances des applications Python, en particulier dans un cadre Django. Nous couvrirons l'installation redis, la configuration de Django et les comparaisons de performances pour mettre en évidence le bien

Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch?Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch?Mar 10, 2025 pm 06:52 PM

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Introduction à la programmation parallèle et simultanée dans PythonIntroduction à la programmation parallèle et simultanée dans PythonMar 03, 2025 am 10:32 AM

Python, un favori pour la science et le traitement des données, propose un écosystème riche pour l'informatique haute performance. Cependant, la programmation parallèle dans Python présente des défis uniques. Ce tutoriel explore ces défis, en se concentrant sur l'interprète mondial

Comment implémenter votre propre structure de données dans PythonComment implémenter votre propre structure de données dans PythonMar 03, 2025 am 09:28 AM

Ce didacticiel montre la création d'une structure de données de pipeline personnalisée dans Python 3, en tirant parti des classes et de la surcharge de l'opérateur pour une fonctionnalité améliorée. La flexibilité du pipeline réside dans sa capacité à appliquer une série de fonctions à un ensemble de données, GE

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Repo: Comment relancer ses coéquipiers
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

PhpStorm version Mac

PhpStorm version Mac

Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Dreamweaver Mac

Dreamweaver Mac

Outils de développement Web visuel

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

MinGW - GNU minimaliste pour Windows

MinGW - GNU minimaliste pour Windows

Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.