


Comment puis-je aplatir les dictionnaires imbriqués et compresser leurs clés en Python ?
Aplatissement des dictionnaires imbriqués : compression des clés
Dans le domaine de la manipulation de données, rencontrer des dictionnaires imbriqués peut souvent poser un défi lorsqu'il s'agit d'accéder données. Un scénario courant est la nécessité d’aplatir ces dictionnaires complexes, créant ainsi une structure plus simple avec des clés compressées. Comprendre comment effectuer cette tâche efficacement est crucial pour une analyse et une gestion efficaces des données.
Considérons un dictionnaire imbriqué au format suivant :
{'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}
Notre objectif est de transformer ce dictionnaire en un dictionnaire aplati. version où les clés sont compressées pour refléter leur structure hiérarchique :
{'a': 1, 'c_a': 2, 'c_b_x': 5, 'c_b_y': 10, 'd': [1, 2, 3]}
Pour y parvenir, nous pouvons exploiter un algorithme d'aplatissement. L'approche consiste à parcourir le dictionnaire, à créer de nouvelles clés en concaténant les clés parents avec des clés enfants et un séparateur, et finalement à générer un nouveau dictionnaire aplati.
La mise en œuvre de cet algorithme en Python implique l'utilisation de la base collections.abc.MutableMapping. classe pour gérer différents types de dictionnaires. Voici une implémentation Python :
def flatten(dictionary, parent_key='', separator='_'): items = [] for key, value in dictionary.items(): new_key = parent_key + separator + key if parent_key else key if isinstance(value, MutableMapping): items.extend(flatten(value, new_key, separator=separator).items()) else: items.append((new_key, value)) return dict(items) >>> flatten({'a': 1, 'c': {'a': 2, 'b': {'x': 5, 'y' : 10}}, 'd': [1, 2, 3]}) {'a': 1, 'c_a': 2, 'c_b_x': 5, 'd': [1, 2, 3], 'c_b_y': 10}
En utilisant cet algorithme, nous pouvons aplatir efficacement les dictionnaires imbriqués, en compressant les clés pour fournir une structure de données simplifiée pour une gestion et une analyse plus efficaces des données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Chargement des fichiers de cornichons dans Python 3.6 Rapport de l'environnement Erreur: modulenotFoundError: NomoduLenamed ...

Comment résoudre le problème de la segmentation des mots jieba dans l'analyse des commentaires pittoresques? Lorsque nous effectuons des commentaires et des analyses pittoresques, nous utilisons souvent l'outil de segmentation des mots jieba pour traiter le texte ...


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

Dreamweaver Mac
Outils de développement Web visuel

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux