


Quelle est l'efficacité de la concaténation de chaînes de Python et quand est-elle optimisée ?
Comment ajouter efficacement une chaîne à une autre en Python ?
Lors de l'ajout d'une chaîne à une autre chaîne, il est efficace de optimiser le fonctionnement, notamment pour les scénarios avec plusieurs concaténations. La méthode traditionnelle décrite dans la question, var3 = var1 var2, n'est pas toujours la plus efficace.
CPython Optimization
CPython, l'implémentation par défaut de Python, utilise une optimisation spécifique pour la concaténation de chaînes lorsqu'une seule référence à la chaîne initiale existe. Cette optimisation tente d'étendre la chaîne en place, ce qui entraîne une opération O(n) amortie. Cela signifie que pour des scénarios tels que :
s = "" for i in range(n): s += str(i)
qui étaient auparavant O(n^2), sont désormais beaucoup plus rapides, à O(n).
Détails de mise en œuvre
L'optimisation de CPython est implémentée dans la fonction _PyBytes_Resize dans bytesobject.c. Il réalloue la mémoire pour l'objet chaîne, augmentant sa taille de la quantité spécifiée. En cas de succès, il met à jour la taille de la chaîne et définit un octet nul final pour terminer la chaîne.
Vérification empirique
Pour démontrer cette optimisation de manière empirique, considérez ce qui suit timeit résultats :
$ python -m timeit -s"s=''" "for i in xrange(10):s+='a'" 1000000 loops, best of 3: 1.85 usec per loop $ python -m timeit -s"s=''" "for i in xrange(100):s+='a'" 10000 loops, best of 3: 16.8 usec per loop $ python -m timeit -s"s=''" "for i in xrange(1000):s+='a'" 10000 loops, best of 3: 158 usec per loop $ python -m timeit -s"s=''" "for i in xrange(10000):s+='a'" 1000 loops, best of 3: 1.71 msec per loop $ python -m timeit -s"s=''" "for i in xrange(100000):s+='a'" 10 loops, best of 3: 14.6 msec per loop $ python -m timeit -s"s=''" "for i in xrange(1000000):s+='a'" 10 loops, best of 3: 173 msec per loop
Pour les chaînes plus petites, la surcharge est minime, mais à mesure que la taille de la chaîne augmente, l'approche optimisée devient nettement plus efficace.
Attention
> ;Il est important de noter que cette optimisation ne fait pas partie de la spécification Python. Il s'agit d'un détail d'implémentation spécifique de CPython et peut ne pas être présent dans d'autres implémentations Python comme PyPy ou Jython.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Chargement des fichiers de cornichons dans Python 3.6 Rapport de l'environnement Erreur: modulenotFoundError: NomoduLenamed ...

Comment résoudre le problème de la segmentation des mots jieba dans l'analyse des commentaires pittoresques? Lorsque nous effectuons des commentaires et des analyses pittoresques, nous utilisons souvent l'outil de segmentation des mots jieba pour traiter le texte ...


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

Dreamweaver Mac
Outils de développement Web visuel

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux