Maison >développement back-end >Tutoriel Python >Quand les affectations chaînées deviennent-elles problématiques chez les pandas ?
Introduction :
Lorsqu'ils travaillent avec Pandas, les utilisateurs peuvent rencontrer des avertissements « SettingWithCopy » qui soulèvent des inquiétudes quant au comportement des opérations sur la structure de données. Cet article vise à élucider le concept d'affectations chaînées et leurs implications dans Pandas, avec une attention particulière au rôle de .ix(), .iloc() et .loc().
Dans Pandas, les affectations chaînées impliquent une série d'opérations effectuées sur un DataFrame ou une série qui attribuent des valeurs à une colonne ou un élément particulier. Cependant, l'attribution directe de valeurs à une série ou à un DataFrame peut entraîner un comportement inattendu en raison de la création de copies potentielles.
Pandas émet des avertissements (SettingWithCopyWarnings) lorsqu'il soupçonne que les affectations chaînées sont étant utilisé. Ces avertissements visent à alerter les utilisateurs d'éventuelles conséquences inattendues, car ils peuvent conduire à des copies de données modifiées, provoquant de la confusion.
Le choix des méthodes .ix(), .iloc() ou .loc() n'influence pas directement les affectations chaînées. Ces méthodes sont principalement utilisées pour la sélection de lignes et de colonnes et n'affectent pas le comportement des affectations.
Les affectations chaînées peuvent potentiellement conduire à des résultats inattendus, tels que des copies de données modifié à la place de l'objet d'origine. Cela peut prêter à confusion et rendre difficile le suivi des modifications et l'identification de l'état correct des données.
Pour éviter les affectations chaînées et les avertissements qui en résultent, il est recommandé de effectuer des opérations sur des copies de données plutôt que sur les objets originaux. Cela garantit que les modifications sont appliquées à l'emplacement souhaité sans aucune ambiguïté.
Si vous le souhaitez, les utilisateurs peuvent désactiver les avertissements de chaînage en définissant l'option « chained_assignment » sur « Aucun ». en utilisant pd.set_option(). Cependant, il n'est généralement pas conseillé de désactiver ces avertissements, car ils constituent des indicateurs précieux de problèmes potentiels.
Considérez l'exemple fourni dans la demande d'origine :
data['amount'] = data['amount'].astype(float) data["amount"].fillna(data.groupby("num")["amount"].transform("mean"), inplace=True) data["amount"].fillna(mean_avg, inplace=True)
Dans cet exemple, la première ligne attribue des valeurs à la colonne « montant », ce qui peut ou non créer une copie. Les lignes suivantes fonctionnent sur la colonne « montant », qui pourrait être une copie au lieu des données originales. Il est plus explicite d'attribuer le résultat des opérations fillna() à une nouvelle colonne ou variable au lieu de modifier directement la colonne 'montant'.
Pour éviter d'enchaîner les affectations dans le exemple fourni, le code suivant est recommandé :
new_amount = data["amount"].fillna(data.groupby("num")["amount"].transform("mean")) data["new_amount"] = new_amount.fillna(mean_avg)
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!