


Comment coder en couleur les nuages de points par valeurs de colonne en Python ?
Graphiques à nuages de points à codage couleur par valeurs de colonne en Python
Dans la visualisation de données, l'attribution de couleurs à différentes catégories peut améliorer la clarté et révéler des motifs. Cette fonctionnalité est facilement disponible dans ggplot2 pour R, mais comment pouvons-nous obtenir la même chose en Python en utilisant pandas et matplotlib ?
Mise à jour : améliorations Seaborn
Depuis la réponse originale , Seaborn est devenu une bibliothèque puissante pour créer des intrigues informatives et visuellement attrayantes. Ses mises à jour récentes offrent des fonctions pratiques pour colorer les nuages de points en fonction des valeurs des colonnes :
- Utilisation de seaborn.relplot : Cette fonction de haut niveau combine des aspects de matplotlib.pyplot.scatter et de Seaborn. FacetteGrille. Il gère automatiquement le codage des couleurs en fonction des paramètres de teinte et d'ordre spécifiés.
- Mappage de matplotlib.pyplot.scatter à seaborn.FacetGrid : Semblable à l'approche originale, vous pouvez mapper la fonction scatter sur un FacetGrid et personnalisez les couleurs en fonction de la teinte.
Approche originale Pandas et Matplotlib
Pour ceux qui recherchent une approche directe avec Matplotlib, voici une fonction personnalisée qui attribue des couleurs aux points basés sur une colonne catégorielle :
<code class="python">import matplotlib.pyplot as plt import pandas as pd def dfScatter(df, xcol='Height', ycol='Weight', catcol='Gender'): fig, ax = plt.subplots() categories = np.unique(df[catcol]) colors = np.linspace(0, 1, len(categories)) colordict = dict(zip(categories, colors)) df["Color"] = df[catcol].apply(lambda x: colordict[x]) ax.scatter(df[xcol], df[ycol], c=df["Color"]) return fig</code>
Cette fonction crée un dictionnaire de couleurs à partir de valeurs de catégorie uniques et attribue les couleurs correspondantes aux points de données. Le nuage de points est ensuite généré avec des points codés par couleur.
Exemple
Utilisation de l'exemple de cadre de données fourni :
<code class="python">df = pd.DataFrame({'Height': np.append(np.random.normal(6, 0.25, size=5), np.random.normal(5.4, 0.25, size=5)), 'Weight': np.append(np.random.normal(180, 20, size=5), np.random.normal(140, 20, size=5)), 'Gender': ["Male", "Male", "Male", "Male", "Male", "Female", "Female", "Female", "Female", "Female"]})</code>
Appel de la fonction dfScatter avec le dataframe :
<code class="python">fig = dfScatter(df) fig.savefig('color_coded_scatterplot.png')</code>
Produit un nuage de points où les points sont colorés par sexe :
[Image du nuage de points coloré par sexe]
Les fonctionnalités avancées de Seaborn et le La fonction dfScatter personnalisée offre des options flexibles pour ajouter un codage couleur aux nuages de points en Python, rendant la visualisation des données plus informative et visuellement attrayante.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Comment enseigner les bases de la programmation novice en informatique dans les 10 heures? Si vous n'avez que 10 heures pour enseigner à l'informatique novice des connaissances en programmation, que choisissez-vous d'enseigner ...

Comment éviter d'être détecté lors de l'utilisation de FiddlereVerywhere pour les lectures d'homme dans le milieu lorsque vous utilisez FiddlereVerywhere ...

Chargement des fichiers de cornichons dans Python 3.6 Rapport de l'environnement Erreur: modulenotFoundError: NomoduLenamed ...


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP

Version crackée d'EditPlus en chinois
Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP