search
HomeBackend DevelopmentPython Tutorial123456789组成的3×3的矩阵的行列式最大的值是多少?

123456789怎样运算等于1? - abccsss 的回答
123456789组成的3×3的矩阵的行列式最大的值是多少?假定每个数字只能出现一次。

回复内容:

Mathematica代码

较简洁
Det/@N@Range@9~Permutations~{9}~ArrayReshape~{9!,3,3}//Max
\begin{Large}
\det
\begin{vmatrix}
9 & 2 & 4 \\
5 & 7 & 1 \\
3 & 6 & 8 \\
\end{vmatrix}
= 412
\end{Large}

以上用Matlab暴力破解(枚举9! = 362880种情形),暂未输出行列式相同的其他情形,貌似基本秒出。
<span class="n">max_det</span> <span class="p">=</span> <span class="mi">0</span><span class="p">;</span>
<span class="n">init_perm</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">,</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">]);</span>
<span class="n">all_perms</span> <span class="p">=</span> <span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">);</span>

<span class="k">for</span> <span class="nb">i</span> <span class="p">=</span> <span class="mi">1</span><span class="p">:</span><span class="nb">size</span><span class="p">(</span><span class="n">all_perms</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
    <span class="n">matrix</span> <span class="p">=</span> <span class="n">all_perms</span><span class="p">(</span><span class="nb">i</span><span class="p">,</span> <span class="p">:);</span>
    <span class="n">matrix</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="n">matrix</span><span class="p">,</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">]);</span>
    <span class="n">det_value</span> <span class="p">=</span> <span class="n">det</span><span class="p">(</span><span class="n">matrix</span><span class="p">);</span>
    
    <span class="k">if</span> <span class="n">det_value</span> <span class="o">></span> <span class="n">max_det</span>
        <span class="n">max_det</span> <span class="p">=</span> <span class="n">det_value</span><span class="p">;</span>
        <span class="n">init_perm</span> <span class="p">=</span> <span class="n">matrix</span><span class="p">;</span>
    <span class="k">end</span>
    
<span class="k">end</span>
123456789组成的3×3的矩阵的行列式最大的值是多少?list = Permutations[Range[9], {9}];
matrix = Partition[#, 3] & /@ list;
answer = Det /@ matrix;
m = Max[answer];
pos = Flatten[Position[answer, m]];
matrix[[#]] & /@ pos 贴个毫无技术含量暴力程度max的python版。。。

import itertools
import time

def max_matrix():
	begin = time.time()
	elements = [1, 2, 3, 4, 5, 6, 7, 8, 9]
	maxdet = 0
	maxmat = []
	for i in itertools.permutations(elements, 9):
		det = i[0] * i[4] * i[8] + i[1] * i[5] * i[6] + i[2] * i[3] * i[7] - i[2] * i[4] * i[6] - i[1] * i[3] * i[8] - i[0] * i[5] * i[7]
		if(det > maxdet):
			maxdet = det
			maxmat = []
			for j in range(0, 9):
				maxmat.append(i[j])
	print "|" + str(maxmat[0]) + " " + str(maxmat[1]) + " " + str(maxmat[2]) + "|"
	print "|" + str(maxmat[3]) + " " + str(maxmat[4]) + " " + str(maxmat[5]) + "| = " + str(maxdet)
	print "|" + str(maxmat[6]) + " " + str(maxmat[7]) + " " + str(maxmat[8]) + "|"
	end = time.time()
	print str(end - begin) + 's used.'

if __name__ == '__main__':
	max_matrix()
题目应该改成1 2 3 ...n^2组成n阶行列式的最大值。并求最优解的时间复杂度才有意思。 C++:
<span class="cp">#include <cstdio></span>
<span class="cp">#include <algorithm></span>
<span class="k">using</span> <span class="k">namespace</span> <span class="n">std</span><span class="p">;</span>
<span class="kt">int</span> <span class="n">ans</span><span class="p">,</span> <span class="n">a</span><span class="p">[]</span> <span class="o">=</span> <span class="p">{</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">9</span><span class="p">};</span>
<span class="kt">int</span> <span class="nf">main</span><span class="p">()</span> <span class="p">{</span>
  <span class="k">do</span>
    <span class="n">ans</span> <span class="o">=</span> <span class="n">max</span><span class="p">(</span><span class="n">ans</span><span class="p">,</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">8</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">5</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">7</span><span class="p">])</span> <span class="o">+</span>
                   <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">5</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">6</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">8</span><span class="p">])</span> <span class="o">+</span>
                   <span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">7</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">6</span><span class="p">]));</span>
  <span class="k">while</span> <span class="p">(</span><span class="n">next_permutation</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">9</span><span class="p">));</span>
  <span class="n">printf</span><span class="p">(</span><span class="s">"%d</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span> <span class="n">ans</span><span class="p">);</span>
<span class="p">}</span>
把yellow的答案重排一下可得
9 4 2
3 8 6
5 1 7

很容易看出思路了。
1.所有数按大小在斜率为-1的对角线上依次排开。(即:987在一条对角线,654在一条,321在一条)很容易看出这是让正向数值最大的方法。
2.对于反向的对角线,排除主对角线之外的任意两个数之和相等,且乘积越大的,相应的主对角线元素越小。(也就是让三个乘积的最大值最小,然后最大的结果再和最小的数相配这样)

但是以上方法仅限于1~9的3x3矩阵,对于其它的矩阵不一定适用。
因为显然这种方法要求正向和负向都只有对角线(或平行于对角线),但是4x4的行列式就开始有拐弯了。。。

然后,我感觉还有三个漏洞,一是贪心法不一定保证正向最大,也不一定保证反向最小,更不一定保证正反向之差最大。(不一定都是漏洞,可能有的是恒成立的)
但是我感觉对3x3的非负矩阵来说,贪心在多数情况下是可以拿到最大值的。

PS:试了很多组数,都是这个解,然后又试了一组[1 2 3 4 5 6 7 8 100],显然答案发生了变化,因为100的权值比8和7大太多,所以负向的时候直接就把2和1给了100。那么这也就证明了贪心法确实有时候得不到最大值。 前面已经有了python,c和MMA的代码了,我来一发matlab的吧
<span class="n">p</span><span class="p">=</span><span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">);</span>
<span class="p">[</span><span class="n">n</span><span class="p">,</span><span class="o">~</span><span class="p">]=</span><span class="nb">size</span><span class="p">(</span><span class="n">p</span><span class="p">);</span>
<span class="n">z</span><span class="p">=</span><span class="nb">zeros</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span>
<span class="k">for</span> <span class="nb">i</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="n">n</span>
    <span class="n">z</span><span class="p">(</span><span class="nb">i</span><span class="p">)=</span><span class="n">det</span><span class="p">(</span><span class="nb">reshape</span><span class="p">(</span><span class="n">p</span><span class="p">(</span><span class="nb">i</span><span class="p">,:),</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">));</span>
<span class="k">end</span>
<span class="n">max</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="n">id</span><span class="p">=</span><span class="nb">find</span><span class="p">(</span><span class="n">z</span><span class="o">==</span><span class="n">max</span><span class="p">(</span><span class="n">z</span><span class="p">));</span>
<span class="k">for</span> <span class="nb">i</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="nb">length</span><span class="p">(</span><span class="n">id</span><span class="p">)</span>
    <span class="nb">disp</span><span class="p">(</span><span class="nb">reshape</span><span class="p">(</span><span class="n">p</span><span class="p">(</span><span class="n">id</span><span class="p">(</span><span class="nb">i</span><span class="p">),:),</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">));</span>
<span class="k">end</span>
对于三阶的穷举,可以不用det函数会比较简单:
<span class="n">p</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">),</span><span class="s">''</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">);</span>
<span class="n">M</span> <span class="p">=</span> <span class="n">max</span><span class="p">(</span><span class="n">sum</span><span class="p">(</span><span class="n">prod</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span><span class="o">-</span><span class="n">sum</span><span class="p">(</span><span class="n">prod</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="mi">3</span><span class="p">),</span><span class="mi">2</span><span class="p">));</span>
话题的语言还少个Mathematica,就我来吧
直接9!个结果存下来刚正面,0优化
Det[Partition[#, 3]] & /@ Permutations[Range[9]] // Max

412
Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.