完整代码下载:http://xiazai.bitsCN.com/201407/tools/python-migong.rar
最近研究了下迷宫的生成算法,然后做了个简单的在线迷宫游戏。游戏地址和对应的开源项目地址可以通过上面的链接找到。开源项目中没有包含服务端的代码,因为服务端的代码实在太简单了。下面将简单的介绍下随机迷宫的生成算法。一旦理解后你会发现这个算法到底有多简单。
1.将迷宫地图分成多个房间,每个房间都有四面墙。
2.让“人”从地图任意一点A出发,开始在迷宫里游荡。从A房间的1/2/3/4个方向中的任选一个方向前进。在从A房间走到B房间的过程中,推倒A/B房间之间的墙。
3.如果方向x对面的房间已经走过,则选择其他方向。如果所有方向的房间都已经走过,则退回上一个房间看是否还有可选道路。
4.走到真正无路可走时,说明已经走过了所有房间,迷宫也生成好了。
下面是该算法的python实现(核心部分)
def gen_map(self, max_x=10, max_y=10): """ 生成迷宫 """ self.max_x, self.max_y = max_x, max_y # 设置地图大小 self.mmap = [[None for j in range(self.max_y)] for i in range(self.max_x)] # 生成原始地图 self.solution = [] # 迷宫解法 block_stack = [Block(self, 0, 0)] # 从0,0开始生成迷宫(同时将这点作为起点),将起点放到栈里 while block_stack: block = block_stack.pop() #取出当前所在的房间 next_block = block.get_next_block() # 获取下一个要去的房间 if next_block: # 如果成功获取下一走发,将走过的房间放回到栈里 block_stack.append(block) block_stack.append(next_block) if next_block.x == self.max_x - 1 and next_block.y == self.max_y - 1: # 走到终点了,栈里的路径就是解法 for o in block_stack: self.solution.append((o.x, o.y)) def get_next_block_pos(self, direction): """ 获取指定方向的房间号 """ x = self.x y = self.y if direction == 0: # Top y -= 1 elif direction == 1: # Right x += 1 if direction == 2: # Bottom y += 1 if direction == 3: # Left x -= 1 return x, y def get_next_block(self): """ 获取下一要去的房间 """ directions = list(range(4)) random.shuffle(directions) # 随机获取一个要去的方向 for direction in directions: x, y = self.get_next_block_pos(direction) if x >= self.mmap.max_x or x < 0 or y >= self.mmap.max_y or y < 0: # 房间号在许可范围内 continue if self.mmap.mmap[x][y]: # 如果已经走过 continue self.walls[direction] = False return Block(self.mmap, x, y, direction) return None # 没找到有可用的房间
注: 由于采用该方法生成的迷宫道路的分支数量并不是太多,coffeescript版在生成迷宫的过程中增加了随机处理,对应算法也稍微复杂一点点。

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

Arraysaresignificantlyfasterthanlistsforoperationsbenefitingfromdirectmemoryaccessandfixed-sizestructures.1)Accessingelements:Arraysprovideconstant-timeaccessduetocontiguousmemorystorage.2)Iteration:Arraysleveragecachelocalityforfasteriteration.3)Mem

Arraysarebetterforelement-wiseoperationsduetofasteraccessandoptimizedimplementations.1)Arrayshavecontiguousmemoryfordirectaccess,enhancingperformance.2)Listsareflexiblebutslowerduetopotentialdynamicresizing.3)Forlargedatasets,arrays,especiallywithlib

Mathematical operations of the entire array in NumPy can be efficiently implemented through vectorized operations. 1) Use simple operators such as addition (arr 2) to perform operations on arrays. 2) NumPy uses the underlying C language library, which improves the computing speed. 3) You can perform complex operations such as multiplication, division, and exponents. 4) Pay attention to broadcast operations to ensure that the array shape is compatible. 5) Using NumPy functions such as np.sum() can significantly improve performance.

In Python, there are two main methods for inserting elements into a list: 1) Using the insert(index, value) method, you can insert elements at the specified index, but inserting at the beginning of a large list is inefficient; 2) Using the append(value) method, add elements at the end of the list, which is highly efficient. For large lists, it is recommended to use append() or consider using deque or NumPy arrays to optimize performance.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Chinese version
Chinese version, very easy to use

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
