search
HomeBackend DevelopmentPython Tutorialpython数据结构之二叉树的统计与转换实例

python数据结构之二叉树的统计与转换实例

Jun 06, 2016 am 11:30 AM
pythonBinary treedata structurestatisticschange

一、获取二叉树的深度

就是二叉树最后的层次,如下图:

python数据结构之二叉树的统计与转换实例

实现代码:

代码如下:


def getheight(self):
        ''' 获取二叉树深度 '''
        return self.__get_tree_height(self.root)

    def __get_tree_height(self, root):
        if root is 0:
            return 0
        if root.left is 0 and root.right is 0:
            return 1
        else:
            left = self.__get_tree_height(root.left)
            right = self.__get_tree_height(root.right)
            if left                 return right + 1
            else:
                return left + 1

二、叶子的统计

叶子就是二叉树的节点的 left 指针和 right 指针分别指向空的节点

代码如下:


def getleafcount(self):
        ''' 获取二叉树叶子数 '''
        return self.__count_leaf_node(self.root)

    def __count_leaf_node(self, root):
        res = 0
        if root is 0:
            return res
        if root.left is 0 and root.right is 0:
            res += 1
            return res
        if root.left is not 0:
            res += self.__count_leaf_node(root.left)
        if root.right is not 0:
            res += self.__count_leaf_node(root.right)
        return res

三、统计叶子的分支节点

与叶子节点相对的其他节点 left 和 right 的指针指向其他节点

代码如下:


def getbranchcount(self):
        ''' 获取二叉树分支节点数 '''
        return self.__get_branch_node(self.root)

    def __get_branch_node(self, root):
        if root is 0:
            return 0
        if root.left is 0 and root.right is 0:
            return 0
        else:
            return 1 + self.__get_branch_node(root.left) + self.__get_branch_node(root.right)

四、二叉树左右树互换

代码如下:


def replacelem(self):
        ''' 二叉树所有结点的左右子树相互交换 '''
        self.__replace_element(self.root)

    def __replace_element(self, root):
        if root is 0:
            return
        root.left, root.right = root.right, root.left
        self.__replace_element(root.left)
        self.__replace_element(root.right)

这些方法和操作,都是运用递归。其实二叉树的定义也是一种递归。附上最后的完整代码:

代码如下:


# -*- coding: utf - 8 - *-

    
class TreeNode(object):

    def __init__(self, left=0, right=0, data=0):
        self.left = left
        self.right = right
        self.data = data

    
class BinaryTree(object):

    def __init__(self, root=0):
        self.root = root

    def is_empty(self):
        if self.root is 0:
            return True
        else:
            return False

    def create(self):
        temp = input('enter a value:')
        if temp is '#':
            return 0
        treenode = TreeNode(data=temp)
        if self.root is 0:
            self.root = treenode

        treenode.left = self.create()
        treenode.right = self.create()

    def preorder(self, treenode):
        '前序(pre-order,NLR)遍历'
        if treenode is 0:
            return
        print treenode.data
        self.preorder(treenode.left)
        self.preorder(treenode.right)

    def inorder(self, treenode):
        '中序(in-order,LNR'
        if treenode is 0:
            return
        self.inorder(treenode.left)
        print treenode.data
        self.inorder(treenode.right)

    def postorder(self, treenode):
        '后序(post-order,LRN)遍历'
        if treenode is 0:
            return
        self.postorder(treenode.left)
        self.postorder(treenode.right)
        print treenode.data

    def preorders(self, treenode):
        '前序(pre-order,NLR)非递归遍历'
        stack = []
        while treenode or stack:
            if treenode is not 0:
                print treenode.data
                stack.append(treenode)
                treenode = treenode.left
            else:
                treenode = stack.pop()
                treenode = treenode.right

    def inorders(self, treenode):
        '中序(in-order,LNR) 非递归遍历'
        stack = []
        while treenode or stack:
            if treenode:
                stack.append(treenode)
                treenode = treenode.left
            else:
                treenode = stack.pop()
                print treenode.data
                treenode = treenode.right

    def postorders(self, treenode):
        '后序(post-order,LRN)非递归遍历'
        stack = []
        pre = 0
        while treenode or stack:
            if treenode:
                stack.append(treenode)
                treenode = treenode.left
            elif stack[-1].right != pre:
                treenode = stack[-1].right
                pre = 0
            else:
                pre = stack.pop()
                print pre.data

    # def postorders(self, treenode):
    #     '后序(post-order,LRN)非递归遍历'
    #     stack = []
    #     queue = []
    #     queue.append(treenode)
    #     while queue:
    #         treenode = queue.pop()
    #         if treenode.left:
    #             queue.append(treenode.left)
    #         if treenode.right:
    #             queue.append(treenode.right)
    #         stack.append(treenode)
    #     while stack:
    #         print stack.pop().data

    def levelorders(self, treenode):
        '层序(post-order,LRN)非递归遍历'
        from collections import deque
        if not treenode:
            return
        q = deque([treenode])
        while q:
            treenode = q.popleft()
            print treenode.data
            if treenode.left:
                q.append(treenode.left)
            if treenode.right:
                q.append(treenode.right)

    def getheight(self):
        ''' 获取二叉树深度 '''
        return self.__get_tree_height(self.root)

    def __get_tree_height(self, root):
        if root is 0:
            return 0
        if root.left is 0 and root.right is 0:
            return 1
        else:
            left = self.__get_tree_height(root.left)
            right = self.__get_tree_height(root.right)
            if left                 return right + 1
            else:
                return left + 1

    def getleafcount(self):
        ''' 获取二叉树叶子数 '''
        return self.__count_leaf_node(self.root)

    def __count_leaf_node(self, root):
        res = 0
        if root is 0:
            return res
        if root.left is 0 and root.right is 0:
            res += 1
            return res
        if root.left is not 0:
            res += self.__count_leaf_node(root.left)
        if root.right is not 0:
            res += self.__count_leaf_node(root.right)
        return res

    def getbranchcount(self):
        ''' 获取二叉树分支节点数 '''
        return self.__get_branch_node(self.root)

    def __get_branch_node(self, root):
        if root is 0:
            return 0
        if root.left is 0 and root.right is 0:
            return 0
        else:
            return 1 + self.__get_branch_node(root.left) + self.__get_branch_node(root.right)

    def replacelem(self):
        ''' 二叉树所有结点的左右子树相互交换 '''
        self.__replace_element(self.root)

    def __replace_element(self, root):
        if root is 0:
            return
        root.left, root.right = root.right, root.left
        self.__replace_element(root.left)
        self.__replace_element(root.right)

node1 = TreeNode(data=1)
node2 = TreeNode(node1, 0, 2)
node3 = TreeNode(data=3)
node4 = TreeNode(data=4)
node5 = TreeNode(node3, node4, 5)
node6 = TreeNode(node2, node5, 6)
node7 = TreeNode(node6, 0, 7)
node8 = TreeNode(data=8)
root = TreeNode(node7, node8, 'root')

    
bt = BinaryTree(root)

print u'''

生成的二叉树

------------------------
         root
      7        8
    6
  2   5
1    3 4

-------------------------

'''

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Understanding the Key DifferencesPython vs. C : Understanding the Key DifferencesApr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python vs. C  : Which Language to Choose for Your Project?Python vs. C : Which Language to Choose for Your Project?Apr 21, 2025 am 12:17 AM

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

Reaching Your Python Goals: The Power of 2 Hours DailyReaching Your Python Goals: The Power of 2 Hours DailyApr 20, 2025 am 12:21 AM

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Maximizing 2 Hours: Effective Python Learning StrategiesMaximizing 2 Hours: Effective Python Learning StrategiesApr 20, 2025 am 12:20 AM

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Choosing Between Python and C  : The Right Language for YouChoosing Between Python and C : The Right Language for YouApr 20, 2025 am 12:20 AM

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python vs. C  : A Comparative Analysis of Programming LanguagesPython vs. C : A Comparative Analysis of Programming LanguagesApr 20, 2025 am 12:14 AM

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

2 Hours a Day: The Potential of Python Learning2 Hours a Day: The Potential of Python LearningApr 20, 2025 am 12:14 AM

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment