直接上代码了
代码如下:
import smtplib
msg = MIMEMultipart()
#构造附件1
att1 = MIMEText(open('/home/a2bgeek/develop/python/hello.py', 'rb').read(), 'base64', 'gb2312')
att1["Content-Type"] = 'application/octet-stream'
att1["Content-Disposition"] = 'attachment; filename="hello.txt"'#这里的filename可以任意写,写什么名字,邮件中显示什么名字
msg.attach(att1)
#构造附件2
#att2 = MIMEText(open('/home/a2bgeek/develop/python/mail.py', 'rb').read(), 'base64', 'gb2312')
#att2["Content-Type"] = 'application/octet-stream'
#att2["Content-Disposition"] = 'attachment; filename="123.txt"'
#msg.attach(att2)
#加邮件头
strTo = ['XXX1@139.com', 'XXX2@163.com', 'XXX3@126.com']
msg['to']=','.join(strTo)
msg['from'] = 'YYY@163.com'
msg['subject'] = '邮件主题'
#发送邮件
try:
server = smtplib.SMTP()
server.connect('smtp.163.com')
server.login('YYY@163.com','yourpasswd')
server.sendmail(msg['from'], strTo ,msg.as_string())
server.quit()
print '发送成功'
except Exception, e:
print str(e)
细心的读者会发现代码中有这样一句:msg['to']=','.join(strTo),但是msg[['to']并没有在后面被使用,这么写明显是不合理的,但是这就是stmplib的bug。你只有这样写才能群发邮件。查明原因如下:
The problem is that SMTP.sendmail and email.MIMEText need two different things.
email.MIMEText sets up the “To:” header for the body of the e-mail. It is ONLY used for displaying a result to the human being at the other end, and like all e-mail headers, must be a single string. (Note that it does not actually have to have anything to do with the people who actually receive the message.)
SMTP.sendmail, on the other hand, sets up the “envelope” of the message for the SMTP protocol. It needs a Python list of strings, each of which has a single address.
So, what you need to do is COMBINE the two replies you received. Set msg‘To' to a single string, but pass the raw list to sendmail.
好了今天就到这里。

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

Arraysaresignificantlyfasterthanlistsforoperationsbenefitingfromdirectmemoryaccessandfixed-sizestructures.1)Accessingelements:Arraysprovideconstant-timeaccessduetocontiguousmemorystorage.2)Iteration:Arraysleveragecachelocalityforfasteriteration.3)Mem

Arraysarebetterforelement-wiseoperationsduetofasteraccessandoptimizedimplementations.1)Arrayshavecontiguousmemoryfordirectaccess,enhancingperformance.2)Listsareflexiblebutslowerduetopotentialdynamicresizing.3)Forlargedatasets,arrays,especiallywithlib

Mathematical operations of the entire array in NumPy can be efficiently implemented through vectorized operations. 1) Use simple operators such as addition (arr 2) to perform operations on arrays. 2) NumPy uses the underlying C language library, which improves the computing speed. 3) You can perform complex operations such as multiplication, division, and exponents. 4) Pay attention to broadcast operations to ensure that the array shape is compatible. 5) Using NumPy functions such as np.sum() can significantly improve performance.

In Python, there are two main methods for inserting elements into a list: 1) Using the insert(index, value) method, you can insert elements at the specified index, but inserting at the beginning of a large list is inefficient; 2) Using the append(value) method, add elements at the end of the list, which is highly efficient. For large lists, it is recommended to use append() or consider using deque or NumPy arrays to optimize performance.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

Dreamweaver Mac version
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.
