大家都知道,linux里一切皆为文件,在linux/unix的根目录下,有个/proc目录,这个/proc 是一种内核和内核模块用来向进程(process)发送信息的机制(所以叫做“/proc”),这个伪文件系统允许与内核内部数据结构交互,获取有关进程的有用信息,在运行中(on the fly)改变设置(通过改变内核参数)。与其他文件系统不同,/proc 存在于内存而不是硬盘中。proc 文件系统提供的信息如下:
•进程信息:系统中的任何一个进程,在 proc 的子目录中都有一个同名的进程 ID,可以找到 cmdline、mem、root、stat、statm,以及 status。某些信息只有超级用户可见,例如进程根目录。每一个单独含有现有进程信息的进程有一些可用的专门链接,系统中的任何一个进程都有一个单独的自链接指向进程信息,其用处就是从进程中获取命令行信息。
•系统信息:如果需要了解整个系统信息中也可以从/proc/stat 中获得,其中包括 CPU 占用情况、磁盘空间、内存对换、中断等。
•CPU 信息:利用/proc/CPUinfo 文件可以获得中央处理器的当前准确信息。
•负载信息:/proc/loadavg 文件包含系统负载信息。
•系统内存信息:/proc/meminfo 文件包含系统内存的详细信息,其中显示物理内存的数量、可用交换空间的数量,以及空闲内存的数量等。
这样,你可以通过cat 命令查看相关信息:
代码如下:
liujl@liujl-ThinkPad-Edge-E431:~/mybash$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 58
model name : Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz
stepping : 9
microcode : 0x15
cpu MHz : 1200.000
cache size : 3072 KB
physical id : 0
siblings : 4
core id : 0
cpu cores : 2
apicid : 0
。。。 。。。
代码如下:
liujl@liujl-ThinkPad-Edge-E431:~/mybash$ cat /proc/meminfo
MemTotal: 3593316 kB
MemFree: 2145916 kB
Buffers: 93372 kB
Cached: 684864 kB
SwapCached: 0 kB
Active: 706564 kB
Inactive: 554052 kB
Active(anon): 483996 kB
Inactive(anon): 178388 kB
Active(file): 222568 kB
Inactive(file): 375664 kB
。。 。 。。。
那下面介绍如何通过python编程的方式获取需求的信息。
1、获取cpu的信息
代码如下:
#! /usr/bin/env python
#Filename:CPU1.py
from __future__ import print_function
from collections import OrderedDict
import pprint
def CPUinfo():
'''Return the info in /proc/cpuinfo
as a dirctionary in the follow format:
CPU_info['proc0']={...}
CPU_info['proc1']={...}
'''
CPUinfo=OrderedDict()
procinfo=OrderedDict()
nprocs = 0
with open('/proc/cpuinfo') as f:
for line in f:
if not line.strip():
#end of one processor
CPUinfo['proc%s' % nprocs]=procinfo
nprocs = nprocs+1
#Reset
procinfo=OrderedDict()
else:
if len(line.split(':')) == 2:
procinfo[line.split(':')[0].strip()] = line.split(':')[1].strip()
else:
procinfo[line.split(':')[0].strip()] = ''
return CPUinfo
if __name__ == '__main__':
CPUinfo = CPUinfo()
for processor in CPUinfo.keys():
print('CPUinfo[{0}]={1}'.format(processor,CPUinfo[processor]['model name']))
运行如下:
代码如下:
liujl@liujl-ThinkPad-Edge-E431:~/mypython$ python CPU1.py
CPUinfo[proc0]=Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz
CPUinfo[proc1]=Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz
CPUinfo[proc2]=Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz
CPUinfo[proc3]=Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz
2、获取内存信息
代码如下:
#! /usr/bin/env python
#Filename:meminfo.py
from __future__ import print_function
from collections import OrderedDict
def meminfo():
'''return the info of /proc/meminfo
as a dictionary
'''
meminfo = OrderedDict()
with open('/proc/meminfo') as f:
for line in f:
meminfo[line.split(':')[0]] = line.split(':')[1].strip()
return meminfo
if __name__ == '__main__':
meminfo = meminfo()
print("Total memory:{0}".format(meminfo['MemTotal']))
print("Free memory:{0}".format(meminfo['MemFree']))
结果如下:
代码如下:
liujl@liujl-ThinkPad-Edge-E431:~/mypython$ python meminfo.py
Total memory:3593316 kB
Free memory:2113712 kB

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

Dreamweaver Mac version
Visual web development tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 English version
Recommended: Win version, supports code prompts!
