TEMPLATES
Django 1.8的新特性
一个列表,包含所有在Django中使用的模板引擎的设置。列表中的每一项都是一个字典,包含某个引擎的选项。
以下是一个简单的设定,告诉Django模板引擎从已安装的应用程序(installed applications)的templates子目录中读取模板:
TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, }, ]
以下选项对所有引擎(backends)都可用。
BACKEND
默认:无定义
使用的模板引擎。内建的模板引擎有:
'django.template.backends.django.DjangoTemplates' 'django.template.backends.jinja2.Jinja2'
通过设置BACKEND为一个完整的(fully-qualified)路径(例如'mypackage.whatever.Backend'),你可以使用非Django自带的引擎。
NAME
默认:看下面
该模板引擎的别名。它是一个标识符,让你在渲染时可以选择一个引擎。别名在所有配置好的模板引擎中必须是唯一的。
当未提供值时,默认是定义引擎类的模板名,也即是与BACKEND相邻的最后一部分。
例如如果引擎是'mypackage.whatever.Backend',那么它的默认名为'whatever'。
DIRS
默认:[](空列表)
引擎用于查找模板源文件的目录,按搜索顺序排列。
APP_DIRS
默认:False
引擎是否在已安装应用程序(的目录)内查找模板源文件。
OPTIONS
默认:{}(空字典)
传递给该模板引擎(backend)的其他参数。不同的引擎,可用的参数不一样。
TEMPLATE_CONTEXT_PROCESSORS
默认:
("django.contrib.auth.context_processors.auth", "django.template.context_processors.debug", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages")
自1.8版本起,不赞成使用:
在一个DjangoTemplates引擎中的OPTIONS设置'context_processors'选项来代替。
用于填充在RequestContext中的上下文的调用函数(callables)的元组。这些函数获取一个request对象作为它的参数,返回一个将要填充至上下文项目的字典。
- Django 1.8的变化:
- 在Django 1.8中,内建模板的上下文处理器从django.core.context_processors移至django.template.context_processors。
TEMPLATE_DEBUG
默认:False
- 自1.8版本起,不赞成使用:
- 在一个DjangoTemplates引擎中的OPTIONS设置'debug' 选项来代替。
一个打开/关闭模板调试模式的布尔值。如果值是True,在模板渲染期间,抛出任何异常都将显示一个可爱的、详情报告的错误页面。该页面包含该模板相关的代码段,并且使用适当的行高亮。
注意如果DEBUG是True,Django只会显示可爱的错误页面。
参见 DEBUG。
TEMPLATE_DIRS
默认:()(空列表)
- 自1.8版本起,不赞成使用:
- 在一个DjangoTemplates引擎中设置'DIRS'选项来代替。
django.template.loaders.filesystem.Loader搜索模板源代码的路径列表,,按搜索顺序排列。
注意即使在Windows中,这些路径也是使用Unix风格的正斜杠。
参见 The Django template language 。
TEMPLATE_LOADERS
默认:
('django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader')
- 自1.8版本起,不赞成使用:
- 在一个DjangoTemplates引擎中的OPTIONS设置'loader'选项来代替。
模板读取器类的元组,用字符串指定。每个读取器类知道怎样从一个特定源(particular source)中导入模板。可选地,也可以使用一个元组来代替使用一个字符串。元组中的第一项应该是读取器的模块,随后的项是在初始化时传递给读取器。参见 The Django template language: for Python programmers。
TEMPLATE_STRING_IF_INVALID
默认:''(空字符串)
- 自1.8版本起,不赞成使用:
- 在一个DjangoTemplates引擎中的OPTIONS设置'string_if_invalid' 选项来代替。
当使用了不可用的(比如说拼写错误)变量时模板系统输出的字符串。参见 How invalid variables are handled。

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Choosing Python or C depends on project requirements: 1) If you need rapid development, data processing and prototype design, choose Python; 2) If you need high performance, low latency and close hardware control, choose C.

By investing 2 hours of Python learning every day, you can effectively improve your programming skills. 1. Learn new knowledge: read documents or watch tutorials. 2. Practice: Write code and complete exercises. 3. Review: Consolidate the content you have learned. 4. Project practice: Apply what you have learned in actual projects. Such a structured learning plan can help you systematically master Python and achieve career goals.

Methods to learn Python efficiently within two hours include: 1. Review the basic knowledge and ensure that you are familiar with Python installation and basic syntax; 2. Understand the core concepts of Python, such as variables, lists, functions, etc.; 3. Master basic and advanced usage by using examples; 4. Learn common errors and debugging techniques; 5. Apply performance optimization and best practices, such as using list comprehensions and following the PEP8 style guide.

Python is suitable for beginners and data science, and C is suitable for system programming and game development. 1. Python is simple and easy to use, suitable for data science and web development. 2.C provides high performance and control, suitable for game development and system programming. The choice should be based on project needs and personal interests.

Python is more suitable for data science and rapid development, while C is more suitable for high performance and system programming. 1. Python syntax is concise and easy to learn, suitable for data processing and scientific computing. 2.C has complex syntax but excellent performance and is often used in game development and system programming.

It is feasible to invest two hours a day to learn Python. 1. Learn new knowledge: Learn new concepts in one hour, such as lists and dictionaries. 2. Practice and exercises: Use one hour to perform programming exercises, such as writing small programs. Through reasonable planning and perseverance, you can master the core concepts of Python in a short time.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.