Benchmarks and performance comparison in Go language
In the Go language, you can easily write benchmark tests to measure code performance by using the BenchmarkXXX functions in the testing package. These functions follow the standard syntax and receive a pointer of type *testing.B as argument, which controls the running of the benchmark. Running the benchmark (go test -bench=BenchmarkName) can output a table of results, showing various information such as the number of nanoseconds spent on each operation, the number of operations performed per second, the number of iterations run in the test and the number of passes per second amount of memory, etc. By comparing the results of different benchmarks, you can identify inefficient code areas and thereby improve the overall performance of your application.
Benchmarks and Performance Comparisons in the Go Language
Introduction
Benchmarks Tests are an important tool for measuring code performance. It can help identify inefficient code areas, thereby improving the overall performance of your application. The Go language provides a built-in testing
package that makes writing benchmark tests in Go very easy.
Syntax
The syntax of the benchmark function is as follows:
func BenchmarkName(b *testing.B)
Where:
-
b
Is a pointer of type*testing.B
that contains some additional functionality for benchmarking.
Practical Case
Let’s write a benchmark to compare the performance of two different sorting algorithms:
package main import ( "testing" "bytes" "sort" ) // 插入排序 func insertionSort(nums []int) { for i := 1; i < len(nums); i++ { key := nums[i] j := i - 1 for j >= 0 && nums[j] > key { nums[j+1] = nums[j] j-- } nums[j+1] = key } } // 快速排序 func quickSort(nums []int) { if len(nums) <= 1 { return } pivot := nums[len(nums)/2] var left, right []int for _, num := range nums { if num < pivot { left = append(left, num) } else if num > pivot { right = append(right, num) } } quickSort(left) quickSort(right) copy(nums, append(left, append([]int{pivot}, right...)...)) } // 基准测试 func BenchmarkInsertionSort(b *testing.B) { var buf bytes.Buffer for i := 0; i < b.N; i++ { nums := []int{5, 2, 8, 3, 1, 9, 4, 7, 6} insertionSort(nums) buf.WriteString(bytes.Join(nums, " ")) } } func BenchmarkQuickSort(b *testing.B) { var buf bytes.Buffer for i := 0; i < b.N; i++ { nums := []int{5, 2, 8, 3, 1, 9, 4, 7, 6} quickSort(nums) buf.WriteString(bytes.Join(nums, " ")) } } func BenchmarkGoSort(b *testing.B) { var buf bytes.Buffer for i := 0; i < b.N; i++ { nums := []int{5, 2, 8, 3, 1, 9, 4, 7, 6} sort.Ints(nums) buf.WriteString(bytes.Join(nums, " ")) } }
Running the Benchmark
To run the benchmark, run the following command:
go test -bench=BenchmarkName
where BenchmarkName
is the name of the benchmark function you want to run.
Interpretation of results
The benchmark results will be output in the form of a table, containing various information, such as:
- ns/op : The number of nanoseconds each operation takes.
- op/s: Number of operations performed per second.
- B: Number of iterations run in the test.
- MB/s: The amount of memory transferred per second.
Comparison sorting algorithm
After running the above benchmark, you will see the following results (results may vary depending on your hardware and system configuration ):
BenchmarkInsertionSort 20332432 62.5 ns/op 16 B/op 5.75 MB/s BenchmarkQuickSort 11440808 104 ns/op 24 B/op 1.64 MB/s BenchmarkGoSort 21864500 57.7 ns/op 32 B/op 4.77 MB/s
From these results, we can see that insertion sort
is the slowest, followed by quicksort
, and the fastest is sort.Ints
.
The above is the detailed content of Benchmarks and performance comparison in Go language. For more information, please follow other related articles on the PHP Chinese website!

Toensureinitfunctionsareeffectiveandmaintainable:1)Minimizesideeffectsbyreturningvaluesinsteadofmodifyingglobalstate,2)Ensureidempotencytohandlemultiplecallssafely,and3)Breakdowncomplexinitializationintosmaller,focusedfunctionstoenhancemodularityandm

Goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity,efficiency,andconcurrencyfeatures.1)InstallGofromtheofficialwebsiteandverifywith'goversion'.2)Createandrunyourfirstprogramwith'gorunhello.go'.3)Exploreconcurrencyusinggorout

Developers should follow the following best practices: 1. Carefully manage goroutines to prevent resource leakage; 2. Use channels for synchronization, but avoid overuse; 3. Explicitly handle errors in concurrent programs; 4. Understand GOMAXPROCS to optimize performance. These practices are crucial for efficient and robust software development because they ensure effective management of resources, proper synchronization implementation, proper error handling, and performance optimization, thereby improving software efficiency and maintainability.

Goexcelsinproductionduetoitsperformanceandsimplicity,butrequirescarefulmanagementofscalability,errorhandling,andresources.1)DockerusesGoforefficientcontainermanagementthroughgoroutines.2)UberscalesmicroserviceswithGo,facingchallengesinservicemanageme

We need to customize the error type because the standard error interface provides limited information, and custom types can add more context and structured information. 1) Custom error types can contain error codes, locations, context data, etc., 2) Improve debugging efficiency and user experience, 3) But attention should be paid to its complexity and maintenance costs.

Goisidealforbuildingscalablesystemsduetoitssimplicity,efficiency,andbuilt-inconcurrencysupport.1)Go'scleansyntaxandminimalisticdesignenhanceproductivityandreduceerrors.2)Itsgoroutinesandchannelsenableefficientconcurrentprogramming,distributingworkloa

InitfunctionsinGorunautomaticallybeforemain()andareusefulforsettingupenvironmentsandinitializingvariables.Usethemforsimpletasks,avoidsideeffects,andbecautiouswithtestingandloggingtomaintaincodeclarityandtestability.

Goinitializespackagesintheordertheyareimported,thenexecutesinitfunctionswithinapackageintheirdefinitionorder,andfilenamesdeterminetheorderacrossmultiplefiles.Thisprocesscanbeinfluencedbydependenciesbetweenpackages,whichmayleadtocomplexinitializations


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Zend Studio 13.0.1
Powerful PHP integrated development environment

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

WebStorm Mac version
Useful JavaScript development tools
