Best practices and principles of golang function concurrency control
Best practices for concurrency control in Go language functions: Limit concurrency: Use mutexes or semaphores to avoid data races. Using channels: Control asynchronous communication between functions through channels. Use goroutine groups: ensure resources are not released until all goroutines have completed. Exception handling: Safely handle exceptions to prevent unexpected termination. Practical example: using goroutine groups and channels to query the database in parallel while limiting concurrency and handling exceptions.
The best practices and principles of Go language function concurrency control
In the Go language, function concurrency control is important for managing concurrent execution function is crucial. Listed below are some best practices and principles to help you control function concurrency effectively:
Limit Concurrency
- Use
sync. Mutex
orsync.RWMutex
to limit concurrent access to shared resources and avoid data competition. - Use
Semaphore
orRateLimiter
to adjust the execution rate of concurrent functions to prevent system overload.
Use channels
- Use channels to control concurrency between functions. Channels provide a buffering mechanism that allows functions to communicate asynchronously.
- Use the
select
statement to monitor multiple channels to implement selective wait or timeout operations.
Use goroutine group
- Use
sync.WaitGroup
orcontext.Context
to wait for a Group goroutine completed. - Ensure that shared resources are not released or critical operations are performed before all goroutines are completed.
Exception handling
- Ensure that the function can safely handle exceptions, such as panic.
- Use error handling mechanism to return and report errors to prevent unexpected termination of concurrent execution.
Practical case: Concurrent query of database
Consider a scenario of querying multiple databases in parallel. We can implement this efficiently using the Go language and best practices:
package main import ( "context" "database/sql" "fmt" "sync" ) func main() { db1 := connectToDB1() db2 := connectToDB2() var wg sync.WaitGroup resultCh := make(chan []string) wg.Add(2) go queryDB(db1, &wg, resultCh) go queryDB(db2, &wg, resultCh) go func() { // 等待 goroutine 完成并合并结果 wg.Wait() close(resultCh) }() for results := range resultCh { fmt.Println(results) } } func queryDB(db *sql.DB, wg *sync.WaitGroup, resultCh chan<- []string) { defer wg.Done() rows, err := db.Query("SELECT * FROM table") if err != nil { log.Fatal(err) } var results []string for rows.Next() { var name string if err := rows.Scan(&name); err != nil { log.Fatal(err) } results = append(results, name) } rows.Close() resultCh <- results }
This code demonstrates how to use goroutine groups and channels to query a database in parallel while limiting concurrency and handling exceptions.
The above is the detailed content of Best practices and principles of golang function concurrency control. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Reasons for choosing Golang include: 1) high concurrency performance, 2) static type system, 3) garbage collection mechanism, 4) rich standard libraries and ecosystems, which make it an ideal choice for developing efficient and reliable software.

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang performs better in compilation time and concurrent processing, while C has more advantages in running speed and memory management. 1.Golang has fast compilation speed and is suitable for rapid development. 2.C runs fast and is suitable for performance-critical applications. 3. Golang is simple and efficient in concurrent processing, suitable for concurrent programming. 4.C Manual memory management provides higher performance, but increases development complexity.

Golang's application in web services and system programming is mainly reflected in its simplicity, efficiency and concurrency. 1) In web services, Golang supports the creation of high-performance web applications and APIs through powerful HTTP libraries and concurrent processing capabilities. 2) In system programming, Golang uses features close to hardware and compatibility with C language to be suitable for operating system development and embedded systems.

Golang and C have their own advantages and disadvantages in performance comparison: 1. Golang is suitable for high concurrency and rapid development, but garbage collection may affect performance; 2.C provides higher performance and hardware control, but has high development complexity. When making a choice, you need to consider project requirements and team skills in a comprehensive way.

Golang is suitable for high-performance and concurrent programming scenarios, while Python is suitable for rapid development and data processing. 1.Golang emphasizes simplicity and efficiency, and is suitable for back-end services and microservices. 2. Python is known for its concise syntax and rich libraries, suitable for data science and machine learning.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools