search
HomeBackend DevelopmentPython TutorialThe death row of the GIL: Breaking concurrency limits and freeing Python

The death row of the GIL: Breaking concurrency limits and freeing Python

Mar 02, 2024 pm 04:13 PM
processMultithreadingConcurrent programmingAsynchronous programming

GIL 的死囚区:打破并发限制并解放 Python

Break the shackles of python GILLock

Python's Global Interpreter Lock (GIL) is a protection mechanism that prevents multiple threads from executing bytecode simultaneously. While it ensures the threadsafety of the Python interpreter, it does so at the expense of concurrency, especially in CPU-intensive tasks.

To bypass GIL restrictions, there are several options:

Multithreading

Multi-threading allows the creation of parallel threads within a single Python process. Although the GIL still prevents threads from executing Python bytecode concurrently, they can perform I/O operations, run C extensions, or execute native code concurrently.

Demo code:

import threading

def io_bound_task():
with open("large_file.txt", "r") as f:
data = f.read()

def cpu_bound_task():
for i in range(1000000):
i * i

threads = []
threads.append(threading.Thread(target=io_bound_task))
threads.append(threading.Thread(target=cpu_bound_task))

for thread in threads:
thread.start()

for thread in threads:
thread.join()

In this example, io_bound_task is I/O-bound and cpu_bound_task is CPU-bound. Since the GIL does not block I/O operations, two threads can execute concurrently.

process

Unlike threads, processes are operating system level concurrent entities. They have their own memory space and operating system resources and are therefore not restricted by the GIL.

Demo code:

import multiprocessing

def cpu_bound_task(n):
for i in range(1000000):
i * i

if __name__ == "__main__":
processes = []
for i in range(4):
processes.append(multiprocessing.Process(target=cpu_bound_task, args=(i,)))

for process in processes:
process.start()

for process in processes:
process.join()

In this example, we create 4 processes, each running a CPU-intensive task. Since the GIL is restricted to a single process, these tasks can be executed in parallel.

AsynchronousProgramming

Asynchronous programming is a non-blocking programming paradigm that allows events to be triggered without waiting for results. It uses techniques such as event loops and callbacks, allowing multiple tasks to be executed in parallel, even if they have GIL locks.

Demo code:

import asyncio

async def io_bound_task():
reader, writer = await asyncio.open_connection("example.com", 80)
writer.write(b"GET / Http/1.1

")
data = await reader.read(1024)
print(data.decode())

async def main():
await asyncio.gather(io_bound_task(), io_bound_task())

asyncio.run(main())

In this example, we use the asyncio library to perform two I/O-intensive tasks. Since asyncio uses an event loop, these tasks can execute concurrently, even if they have GIL locks.

in conclusion

By leveraging multi-threading, processes, and asynchronous programming techniques, we can break the limitations of the GIL and unleash Python's concurrency potential. This is critical to improve performance on CPU-intensive tasks and enhance scalability of large applications. Choosing the best approach depends on your application's specific needs and available resources.

The above is the detailed content of The death row of the GIL: Breaking concurrency limits and freeing Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:编程网. If there is any infringement, please contact admin@php.cn delete
How do you slice a Python array?How do you slice a Python array?May 01, 2025 am 12:18 AM

The basic syntax for Python list slicing is list[start:stop:step]. 1.start is the first element index included, 2.stop is the first element index excluded, and 3.step determines the step size between elements. Slices are not only used to extract data, but also to modify and invert lists.

Under what circumstances might lists perform better than arrays?Under what circumstances might lists perform better than arrays?May 01, 2025 am 12:06 AM

Listsoutperformarraysin:1)dynamicsizingandfrequentinsertions/deletions,2)storingheterogeneousdata,and3)memoryefficiencyforsparsedata,butmayhaveslightperformancecostsincertainoperations.

How can you convert a Python array to a Python list?How can you convert a Python array to a Python list?May 01, 2025 am 12:05 AM

ToconvertaPythonarraytoalist,usethelist()constructororageneratorexpression.1)Importthearraymoduleandcreateanarray.2)Uselist(arr)or[xforxinarr]toconvertittoalist,consideringperformanceandmemoryefficiencyforlargedatasets.

What is the purpose of using arrays when lists exist in Python?What is the purpose of using arrays when lists exist in Python?May 01, 2025 am 12:04 AM

ChoosearraysoverlistsinPythonforbetterperformanceandmemoryefficiencyinspecificscenarios.1)Largenumericaldatasets:Arraysreducememoryusage.2)Performance-criticaloperations:Arraysofferspeedboostsfortaskslikeappendingorsearching.3)Typesafety:Arraysenforc

Explain how to iterate through the elements of a list and an array.Explain how to iterate through the elements of a list and an array.May 01, 2025 am 12:01 AM

In Python, you can use for loops, enumerate and list comprehensions to traverse lists; in Java, you can use traditional for loops and enhanced for loops to traverse arrays. 1. Python list traversal methods include: for loop, enumerate and list comprehension. 2. Java array traversal methods include: traditional for loop and enhanced for loop.

What is Python Switch Statement?What is Python Switch Statement?Apr 30, 2025 pm 02:08 PM

The article discusses Python's new "match" statement introduced in version 3.10, which serves as an equivalent to switch statements in other languages. It enhances code readability and offers performance benefits over traditional if-elif-el

What are Exception Groups in Python?What are Exception Groups in Python?Apr 30, 2025 pm 02:07 PM

Exception Groups in Python 3.11 allow handling multiple exceptions simultaneously, improving error management in concurrent scenarios and complex operations.

What are Function Annotations in Python?What are Function Annotations in Python?Apr 30, 2025 pm 02:06 PM

Function annotations in Python add metadata to functions for type checking, documentation, and IDE support. They enhance code readability, maintenance, and are crucial in API development, data science, and library creation.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool